

MAGiC: polarized single crystal diffractometer for magnetism

LLB: X. Fabrèges, S. Klimko, A. Goukassov
JCNS: W. Schweika, P. Harbott
PSI: U. Filges, M. Kenzelmann

ESS Seminar - 22/11/2016

The science behind MAGiC

Anisotropy in molecular magnets

Data storage at molecular level High density: >10¹⁴ bit/in²

Magnetic state can be manipulated (photo-excitation) No coupling between the cells Strong anisotropy to retain information vs time.

Magnetism Studies |Hot Paper|

Polarized Neutron Diffraction as a Tool for Mapping Molecular Magnetic Anisotropy: Local Susceptibility Tensors in Co^{II} Complexes

Karl Ridier,^[a, f] Béatrice Gillon,^{*[a]} Arsen Gukasov,^[a] Grégory Chaboussant,^[a] Alain Cousson,^[a] Dominique Luneau,^{*[b]} Ana Borta,^[b, g] Jean-François Jacquot,^[c] Ruben Checa,^[b] Yukako Chiba,^[d] Hiroshi Sakiyama,^[d] and Masahiro Mikuriya^[e]

а

Neutrons are sensitive to local magnetization → local SQUID !

Orbital order through spin density

Orbital ordering is playing a key role in the onset of perovskite magnetic properties.

YTiO₃ is a good candidate: ferromagnetic insulator with predicted AF orbital ordering.

$$FR_{PND} = \frac{I^+}{I^-} = \frac{F_N^2 + 2pq^2 F_N F_M + q^2 F_M^2}{F_N^2 - 2peq^2 F_N F_M + q^2 F_M^2}$$
$$Q_{max} \propto \frac{\sin(\theta)}{\lambda}$$

X-rays Magnetic Diffraction adds details to the obtained shape Joint refinement

New magnetic states

Spiral spin-liquids Predicted in spinels AB₂O₄

Order-by-disorder and spiral spin-liquid in frustrated diamond-lattice antiferromagnets

DORON BERGMAN¹*, JASON ALICEA¹, EMANUEL GULL², SIMON TREBST³ AND LEON BALENTS¹

New magnetic states

Spiral spin-liquids Predicted in spinels AB₂O₄

Order-by-disorder and spiral spin-liquid in frustrated diamond-lattice antiferromagnets

DORON BERGMAN¹*, JASON ALICEA¹, EMANUEL GULL², SIMON TREBST³ AND LEON BALENTS¹

Observed in MnSc₂S₄ using polarized neutron diffraction !

Spiral spin-liquid and the emergence of a vortex-like state in MnSc₂S₄

Shang Gao^{1,2}, Oksana Zaharko^{1*}, Vladimir Tsurkan^{3,4}, Yixi Su⁵, Jonathan S. White¹, Gregory S. Tucker^{1,6}, Bertrand Roessli¹, Frederic Bourdarot⁷, Romain Sibille^{1,8}, Dmitry Chernyshov⁹, Tom Fennell¹, Alois Loidl³ and Christian Rüegg^{1,2}

Building for tomorrow

- New scientific trends will emerge in the next decades
- Open land: difficult to predict
- 20 years ago: no spin-liquids, multiferroics, spintronic ...
- Today: first observation of Discrete Time Crystal
- Instrument needs flexibility/adaptability

Functional requirements

MAGiC layout

MAGiC layout

6 m

Neutron Beam Extraction

- Disks diameter = 600 mm
- Frequency < 140 Hz
- Opening time: 60 µs @ 112 Hz

- Pulse Shaping Choppers : select $\delta \lambda / \lambda$ resolution
 - * Small slit: $8.6^{\circ} \rightarrow 120 \mu s$ pulse length
 - * Large slit: $105^{\circ} \rightarrow \lambda$ dependent pulse length
 - * Thermal spectrum: $\delta \lambda / \lambda = 3,0\%$ F=0,63xFt
 - * Cold spectrum: $\delta \lambda / \lambda = 1,9\%$ F=0,77xFc

- Pulse Shaping Choppers : select $\delta \lambda / \lambda$ resolution
 - * Small slit: $8.6^{\circ} \rightarrow 120 \mu s$ pulse length
 - * Large slit: $105^{\circ} \rightarrow \lambda$ dependent pulse length
 - * Thermal spectrum: $\delta \lambda / \lambda = 3,0\%$ F=0,63xFt
 - * Cold spectrum: $\delta \lambda / \lambda = 1,9\%$ F=0,77xF_c

- SC (14 Hz): eliminate sub-pulses from PSC
 - $20.6^{\circ} \rightarrow 1.1 \text{ ms opening}$
 - D = 600 mm
- BC (14 Hz): select wavelength range @~80 m
 - $180^\circ \rightarrow 2.6$ ms opening
 - D = 750 mm

Brilliance Transfer on a $5x5 \text{ mm}^2$ area within +/- $0.3^{\circ}x0.3^{\circ}$ divergence

In-bunker guide

6900 mm → 24500 mm Inclination: -0.469°

Substrate: aluminum Vacuum housing: ensured by the substrate $\rightarrow 10^{-3}$ mbar

5 mm B₄C layer around the guide to reduce activation 30-60 Gauss magnetic guide field (cost vs standardisation)

Heavy shutter: expecting a standard design from ESS. Placed inside the bunker.

High energy shutter setup

6 drums are positioned within the neutron bunker wall.

Drum Sequence:

- 1. Borax (50% epoxy / 50% B₄C)
- 2. Standard steel
- 3. Standard steel
- 4. Borax
- 5. Standard steel
- 6. Tungsten/parafin (density 11.8 g/cm³)

Effective thickness: each drum 20 cm

n-dose rate: 15.2 µSv/h g-dose rate: 0.5 µSv/h (only prompt gammas from the drums)

N-Dose rate can be reduced more by replacing steel with tungsten drums.

<u>Bunker wall</u>

24500 mm → 28000 mm Inclination: -0.469°

Substrate: copper Vacuum housing: ensured by the substrate $\rightarrow 10^{-3}$ mbar

Bronze C86300 anti-streaming volume (checked with Gabor).

End 1st half-ellipse

28000 mm → 80000 mm Inclination: -0.469°

Substrate: BK7 Vacuum housing: 5 mm aluminum pipe \rightarrow 10⁻³ mbar

5 mm B₄C layer around the housing to reduce activation 30-60 Gauss magnetic guide field (cost vs standardisation)

Total drop: 650 mm from Beam Center Line

Straight element

80900 mm → 83900 mm Inclination: -0.235°

Substrate: BK7 Vacuum housing: 5 mm aluminum pipe \rightarrow 10⁻³ mbar 6 horizontal channels: 300µm thick FeSi coated Si layer

5 mm B₄C layer around the housing to reduce activation 1000 Gauss magnetic saturation field

80 mm

2nd half-ellipse

83900 mm \rightarrow 157900 mm Inclination: 0°

Substrate: BK7 Vacuum housing: 5 mm aluminum pipe \rightarrow 10⁻³ mbar

5 mm B₄C layer around the housing to reduce activation 30-60 Gauss magnetic guide field (cost vs standardisation)

Neutron Polarization

<u>Cold neutron polarizer</u>

- Position: in front of PSC
- Solid state bender (3m), 150 µm thick Si wafer coated with FeSi;
- Vertical saturation field of 1 kGauss;
- Mounted inside the light shutter to easily adjust and switch between thermal (0,6 ÷ 2,3Å) and cold (2 ÷ 6Å) polarized neutron beams;

Magnetic guide field

- To keep polarization, magnetic guide field is applied along the full instrument;
- Homogeneous vertical guide field of 60 Gauss inside the guide;
- Soft iron plates + NdFeB magnets;

Magnetic guide field

- To keep polarization, magnetic guide field is applied along the full instrument;
- Homogeneous vertical guide field of 60 Gauss inside the guide;
- Soft iron plates + NdFeB magnets;

Thermal neutron polarizer

- 6 channels FeSi super-mirror polarizer; 3 section by 1m long;
- Horizontal saturation field of 1 kGauss;
- Soft iron yoke + NdFeB magnets;
- Polarization rotator turn polarization 90°;

<u>Adiabatic spin flipper</u>

- Adiabatic spin flipper will be installed in the second guide section at distance from the sample position to limit stray field from 10 T magnet;
- Spin-flip efficiency is ~ 1 from 0,6Å to higher wavelength;

XYZ polarization

- Set of XYZ coils to manipulate the guide field at sample position;
- PASTIS like coil geometry

Polarization analyzer

- Solid state analyser, 150 µm thick Si wafer coated with FeSi;
- 120° horizontal angular aperture, 6° vertical aperture;

Sample exposure system

- Sample table
- Cryostat
- Piezo positioning system Attocube

Beam shaping at sample position

- Beam focusing, SM m=6: gain ~ 4
- 1 Radial Collimator 120°x48° Euro collimators
- Collimation slits (DREAM like)

Detectors

- ¹⁰B Jalousie Detector 60°x48°
- ¹⁰B Jalousie Detector 120°x6° Cascade Detector Technology

Detectors

- ¹⁰B Jalousie Detector 60°x48°
 - Inclination: 10°
 - Length: 520 mm (32 channels) \rightarrow 2.1 mm
 - Height: 902 mm (128 channels) → 5.6 mm
 - Efficiency →

- ¹⁰B Jalousie Detector 120°x6°:
 - Inclination: 10°
 - Length: 500 mm (32 channels) \rightarrow 1.9 mm
 - Height: 100 mm (16 channels) \rightarrow 5.4 mm
 - Efficiency →

<u>Monitors</u>

• 2 monitors on incident and transmitted beam

<u>Monitors</u>

- 2 monitors on incident and transmitted beam
- Current status: micro-Bulk technology derived from CERN beam monitoring: copper micro mesh on Kapton layer
- Efficiency: 10⁻⁴ with 10 nm ¹⁰B capture layer
 - Could be reduced using only N_2 as capture element
- up to 200µm resolution !
- 20 k€ cost/monitor + electronics

Experimental cave

Experimental cave

Experimental cave

Wall thickness calculated for H2 event 52 cm optimized thickness required 60 cm used (safety factor = 2)

5 mm B₄C on the walls Calculated for graphite monochromator in beam

Beamstop (updated)

Thermal beam only !

Beamline shielding

Beam losses inside the guide:

- Boron carbide
- Concrete
- Steel in hotspots

Beamline shielding

Beam losses inside the guide:

- Boron carbide
- Concrete
- Steel in hotspots

 $^{10}B + n_{th} \rightarrow {^7Li^{3+}} + {^4He^{2+}} + \gamma (0.48 \text{ MeV})$ Min. thickness = 25 cm Max. thickness = 80 cm

PAUL SCHERRER INSTITUT

Neutron and prompt gamma dose rates at 5.5m (W6)

PAUL SCHERRER INSTITUT

Neutron and prompt gamma dose rates at 24.5 m (W6)

Energy (MeV)

PSI, 17.10.16

PAUL SCHERRER INSTITUT

cross section inside shielding: 50 cm x 50cm

Shielding around guide:

10 cm borated concrete10 cm standard steel50 cm standard concrete

Source – tally S: 13.8 Sv/h

@77m - tally A: 8.8 mSv/h fast neutron flux: 4.7E4 n/cm²/s

@30m – outside guide shielding tally B: 3.4 µSv/h

@50m ouside guide shielding tally C: 1.9 μSv/h

@77m ouside guide shielding tally D: 1.1 μSv/h

150m Guide Shielding

Shielding design

Dealing with pillars

Compact shielding !

Pillars in the guide hall have been cut to 10 cm height

1/4 shielding block will have to enclose a pillar and metallic beam for guide support

Performance at 2 MW

The full scientific case is covered by the instrument !

Performance at 2 MW

Polarization analysis

3

2

-2

-3

0,0,1

MAGiC: 7.10⁸ n/s/cm²

Expected gain: 300

Performance at 2 MW

Thermal data collection

1 mm³ sample

Topaz (SNS) : 12 hours Expected gain: ~20 30 s per frame60 frames per data collection

Full data collection ~ 30 mn

Instrument budget

	01 Phase 1	02 Phase 2	03 Phase 3	04 Phase 4	Total (k€)
Shielding & Cave					
	0	0	1269	142	1411
Neutrons Optics & Polarization					
	0	0	4484	496	4980
Choppers					
	0	0	675	75	750
Sample Environment					
	0	0	165	20	185
Detectors & Beam Monitors					
	0	0	1324	248	1572
Data Acquisition and Analysis					
	0	0	0	0	0
Motion Control & Automation					
	0	127	152	83	362
Instrument Specific Technical Equipment					
	415	439	493	830	2187
Instrument Infrastructure					
	0	0	365	140	505
Vacuum					
	0	0	0	0	0
Contingency					
					1154
Total					
					13103

Instrument lifecycle

Early procurement

<u>Guide system:</u>

- Design has been optimized
- Tendering process will take > 6 months
- Production up to 2 years
- First element to install on the instrument (inside the bunker)

Detectors:

- A first sector of the large detector is mandatory to check performances
- 200 k€ investment

Choppers:

- Pressure on choppers suppliers will be high
- Our concept is well defined and follows the guide design
- 2 years process and needed on day 1 of installation

Questions ? Remarks ? Comments ?