Particle showers Lessons from high energy physics

Kalliopi Kanaki, Richard Hall-Wilton Detector Group, ESS

Topics addressed

- Electromagnetic & hadronic particle showers
- Useful quantities for their description
- Applications & experience from other fields
 - High Energy Physics (CMS, ZEUS, ALICE, HADES)
- Simulation tools (GEANT)

Electromagnetic vs. hadronic showers

- slender shape
- axially symmetric around the primary direction contain EM showers
- irregular shape due to large p_t particles

Physics processes within a shower

- bremsstrahlung
- photon conversion
- particle-antiparticle annihilation
- hadronic processes -> baryons + light mesons + leptons
- nuclear effects, e.g nucleon evaporation, spallation, excitation
- particle decays (2-body, Dalitz)
- photonuclear interactions, e.g. (γ,p) , (γ,n) , $(\gamma,2p)$
- production of heavier (strange) baryons

Need for

- a suitable validated simulation tool
- reliable measurements of energies and particle species

Useful quantities

- material dependent, f(A, Z)
- mean distance over which a high-energy electron loses all but 1/e of its energy via bremsstrahlung

or

7/9 of the mean free path for pair production

shower depth $X = X_0 \ln(E_0/E_c)/\ln 2$

logarithmic increase with energy

Molière radius: transverse scale of the EM shower

• $f(X_0, Z)$

interaction length $\boldsymbol{\lambda}$

- material, particle and energy dependent
- mean distance travelled by a hadron before undergoing an inelastic nuclear interaction
- inverse of macroscopic cross section
- usually $5-10 > X_0$ hence the large size and weight of hadronic calorimeters

Calorimetry Principles

- Destructive detection technique
- Full dissipation of particle energy, particles are stopped
- Calorimeters are placed in the outer part of the detector
- Common materials used: PbWO4, U, Fe, brass, steel
- However there are additional requirements:
 - Energy resolution and particle identification

CMS EM and hadronic calorimeter

ALICE EM calorimeter

The ZEUS spectrometer

Overview of CMS beam and radiation monitoring

Diagram of Location of BRM+PLT Subsystems RADMON: 18 monitors around UXC PASSIVES: Everywhere

Large Hadron Collider: Detector in the Beam

- "Shielding" may cause backgrounds to go up before going down
- Particle species mix will change also

CMS background simulations (FLUKA)

Figure 9.6: Fluxes for 7TeV collisions in the CMS cavern. Neutron Optics TAP, ESS, 12 February 2013

The triptych of success

Detectors

- Is the sensitivity of detectors to all relevant particle types and energies known and measured?
- Differences between detector types and what you see is golden information
- Data:
 - Use all existing data you can get your hands on, flux maps, particle species, energy spectra
- Simulation:
 - Simulate instruments in detail
 - Preferably with competitive codes (e.g. GEANT/FLUKA/MCNP/MARS)

Remember there may be several sources of problems, not just one ...

Diagnostic Data

- A list of detector information that may be useful to try ...
 - Flux map from simple handheld h10 electronic dosimeters
 - Flux map from simple electronic handheld neutron dosimeters
 - Hand-held gamma spectrometers what gammas do you see? Where can they come from?
- Activation map of activated material along guideline it tells you what material is being activated
- Flux map of fast neutrons (neutron camera, organic scintillator, diamond, He-4)
- SEU in RAM within instruments, and inside guide shielding? (neutrons >10-20 MeV)
- Determine particle species where possible (a la Neutron Camera, IAEP Prague, D. Pfeiffer et al., JINST 6 (2011) P08005)
- Map and directionality of muons indicative of hadronic showers along the guides? Look for loss locations (2-3 layers plastic scintillator in coincidence, separated by lead)
- Charged particle concentrations indicative of unshielded particle showers (2-3 layers plastic scintillator in coincidence)
- Try different detector technologies at the instrument locations do features change?
- Timing features

GEANT: A simulation tool for HEP

- toolkit for the simulation of the passage of particles through matter
- high energy physics, nuclear physics, accelerator physics, medical physics, space science, DNA response to radiation
- includes all relevant EM & hadronic interactions, particle decays and slow neutron related cross sections
- provides special physics lists for shielding applications
- open source
- huge community of users

GEANT application examples

DGCODE simulation software framework

- effort initiated by FRM-II/ESS/ILL
- framework to share simulation code
- facilitate debugging
- better code maintenance
- modular development
- avoid duplication

Already in place and qualified!

To be announced this afternoon ...

GEANT simulation of scattering effects

Thank you for your attention!