

6/6548

New Simulation Tools and Reproduction of CNCS results using Geant4

E. Dian,

K. Kanaki, X. X. Cai, R. Hall-Wilton, A. Khaplanov, T. Kittelmann

dian.eszter@energia.mta.hu

HAS Centre for Energy Research

European Spallation Source ESS ERIC

28 March 2017, ICANS XXII, Oxford

- The ESS detector challenge
 - All instruments in different design phases
 - Diverse set of requirements
 - Challenge: new detectors with several different designs
- Powerful simulation tools

I'm an end-user!

- Application in detector design:
 - Background study for MultiGrid detector

The ESS detector challenge

- Various detectors for various instruments at ESS
- All with **different designs**, all have to be **optimised** for respective instrument requirements
- Good measurement =>high signal-to-background
- ESS: increased flux
- Low level background => need to understand

Effective and universal simulation tool

B-MWPC/ Macrostructures (ESS/FRM2)

MultiGrid (ILL/ESS/LiU)

MultiBlade (ESS/Wigner/LU/LiU)

BandGEM (Milan/CNR/INFN/CERN/ESS)

The ESS detector challenge

- Various detectors for various instruments at ESS
- All with different designs, all have to be optimised for respective instrument requirements

inspiration The detector simulation challenge

- Several already existing simulation codes
- New or improved features needed:
 - Physics
 - Coherent scattering
 - Inelastic scattering
 - Single- and polycrystals...
 - And more
 - Communication
 - Visualisation
 - Ready-to use...

Geant4

mtaEX NXSG4 extension

[Thomas Kittelmann, Mirko Boin]

nxs library

- Low-energy neutron scattering
- Polycrystalline materials
 - Coherent and
 - Incoherent neutron scattering

http://cern.ch/nxsg4/

- examples, license details
- instructions for installation and usage
- usage of the code (including nxs and SgInfo) is free for non-commercial purposes

Fig. 4. Original and NXSG4-corrected cross sections for neutron interactions with aluminium in Geant4 compared to data [9].

NXSG4 makes nxs library available as Geant4 extension

Geant4 simulation

Free-gas model Geant4 aluminum

NXSG4 aluminum

NCrystal

- Neutron scattering on single- and polycrystalline materials
- detailed Bragg diffraction
- first principle inelastic model
- C++
- open source

Standalone NCrystal tool coming soon

MCPL-Monte Carlo Particle List

[Thomas Kittelmann, Esben Klinkby, Erik B. Knudsen, Peter Willendrup]

Contact:

mcpl-developers@cern.ch

In red: already available now

Disclaimer: Non-exhaustive list of applications...

arxiv:1609.02792

http://sine2020.eu/news-and-media/mcpl-a-new-format-that-simplifies-data-interchange-between-applications.html

Monte Carlo Particle List

- https://mctools.github.io/ mcpl/
- Interchange particles with all their properties between MC packages
- flexible yet efficient storage of particle-state information

Best code for best application

mta ECO ESS Coding Framework

[Thomas Kittelmann, Xiao Xiao Cai, Kalliopi Kanaki]

Contact:

Xiao Xiao Cai:

Kalliopi Kanaki:

- **Geant4 simulation framework**
 - **Developed by ESS Detector Group**
 - Used by other groups in ESS e.g. Accelerator Group, Shielding and Optics Group
- Contains all afore mentioned tools:
 - Integrated
 - Transparent for end-user
 - Out-of-the-box usage
- And more:
 - Effective build system
 - Python interface
 - Easy-to-handle histograms for analysis
 - 3D visualisation
 - Griff: an effective binary format for results
 - Powerful parameter scan without recompilation

Intuitive

User friendly

Available, just send a mail [©]

I'm a happy

end-user!

Thomas Kittelmann: thomas.kittelmann@esss.se

xcai@dtu.dk

kalliopi.kanaki@esss.se

Fast to develop new simulations

mta ECO ESS Coding Framework

[Thomas Kittelmann, Xiao Xiao Cai, Kalliopi Kanaki]

- **Geant4 simulation framework**
 - **Developed by ESS Detector Group**
 - Used by other groups in ESS e.g. Accelerator Group, Shielding and Optics Group
- Contains all afore mentioned tools:
 - Integrated
 - Transparent for end-user
 - Out-of-the-box usage
- And more:
 - Effective build system
 - Python interface
 - Easy-to-handle histograms for analysis
 - 3D visualisation
 - Griff: an effective binary format for results
 - Powerful parameter scan without recompilation

Intuitive

User friendly

Available, just

I'm a happy

end-user!

send a mail ©

Fast to develop new simulations

Now let's use it!

Contact:

Thomas Kittelmann: thomas.kittelmann@esss.se

Xiao Xiao Cai: xcai@dtu.dk

kalliopi.kanaki@esss.se Kalliopi Kanaki:

- Sources of neutron detector background
 - Neutron induced gamma background (MCNP6)
 - Prompt gamma radiation from neutron capture
 - Decay gammas from neutron activation

⁴¹Ar activity saturates at **128 mBq/cm³** → low

Negligible signal from self-activation

- Scattered neutrons (Geant4)
 - Elastic, inelastic
 - Coherent, incoherent

Great impact of Coding Framework!

General neutron activation study prepared with MCNP6 for ESS operation conditions

- Ar/CO₂ counting gas
- Aluminum-frame

- Sources of neutron detector background
 - Neutron induced gamma background (MCNP6)
 - Prompt gamma radiation from neutron capture
 - Decay gammas from neutron activation

⁴¹Ar activity saturates at **128 mBq/cm³** → low

Negligible signal from self-activation

- Scattered neutrons (Geant4)
 - Elastic, inelastic
 - Coherent, incoherent

Great impact of Coding Framework!

General neutron activation study prepared with MCNP6 for ESS operation conditions

- Ar/CO₂ counting gas
- Aluminum-frame

- Sources of neutron detector background
 - Neutron induced gamma background (MCNP6)
 - Prompt gamma radiation from neutron capture
 - Decay gammas from neutron activation

⁴¹Ar activity saturates at **128 mBq/cm³** → low

Negligible signal from self-activation

- Scattered neutrons (Geant4)
 - Elastic, inelastic
 - Coherent, incoherent

Great impact of Coding Framework!

General neutron activation study prepared with MCNP6 for ESS operation conditions

- Ar/CO₂ counting gas
- Aluminum-frame

- Sources of neutron detector background
 - Neutron induced gamma background (MCNP6)
 - Prompt gamma radiation from neutron capture
 - Decay gammas from neutron activation

⁴¹Ar activity saturates at **128 mBq/cm³** → low

Negligible signal from self-activation

- Scattered neutrons (Geant4)
 - Elastic, inelastic
 - Coherent, incoherent

Great impact of Coding Framework!

General neutron activation study prepared with MCNP6 for ESS operation conditions

- Ar/CO₂ counting gas
- Aluminum-frame

Scattered neutron background – power of simulation

- Follow the history of neutrons
- Study and distinguish background effects
- Guidelines for detector design

Realistic simulation

Real and measurable neutron energy at conversion point

Geant4 simulation

mta Ex Large area detector for chopper spectroscopy - MultiGrid

MultiGrid detector test at ILL

In-beam test of the Boron-10 Multi-Grid neutron detector at the IN6 time-of-flight spectrometer at the ILL

Validation

A. Khaplanov et al.

http://iopscience.iop.org/article/

10.1088/1742-6596/528/1/012040/pdf

No shielding on the rear wall of grids

MultiGrid detector test at ILL Measured data (ToF, depth of detection)

mta EX MultiGrid detector test at ILL Measured and simulated ToF-depth of detection

EUROPEAN SOURCE

ToF

Measured ToF-depth characteristic and backscatter phenomena reproduced with simulation at 4.1 and 4.6 Å

MultiGrid detector test at ILL Measured and simulated ToF spectra

Validation

Estimated flat alpha-background added (red), unique for this prototype

ToF-spectrum reproduced with simulation at 4.1

mta ECO MultiGrid detector test at CNCS, SNS

Geant4 simulation

mta MultiGrid detector test at CNCS, SNS [Anton Khaplanov]

See Anton Khaplanov's talk Today 12:10 (Detectors 1)

- Chopper spectroscopy
- Measured quantities:
 - ToF
 - detection-coordinates

Energy transfer:

$$E_{trf} = E_{initial} - E_{final}$$

Anton Khaplanov et al.:

Validation

- Distinguish different sources of background
- Detailed analysis and quantification of background effects

Energy transfer reproduced with simulation at 3.678 meV

Summary

- Great progress in neutron scattering simulation
 - Improved modeling for neutron scattering on crystalline material (NXSG4, NCrystal)
 - Effective particle interchange (MCPL)
 - Easy to combine MC codes
 - ESS Coding Framework, where all tools are combined

A powerful neutron simulation toolkit developed

- Full-scale instrument simulation can be done with a single application
- Realistic MultiGrid model built
 - reproduced measured results from IN6 and CNCS experiments
- Ready to use for optimisation

Instruments with better signal-to-background ratio by design

Summary

- Great progress in neutron scattering simulation
 - Improved modeling for neutron scattering on crystalline material (NXSG4, NCrystal)
 - Effective particle interchange (MCPL)
 - Easy to combine MC codes
 - ESS Coding Framework, where all tools are combined

A powerful neutron simulation toolkit developed

- Full-scale instrument simulation can be done with a single application
- Realistic MultiGrid model built
 - reproduced measured results from IN6 and CNCS experiments
- Ready to use for optimisation

Instruments with better signal-to-background ratio by design

6/6548

Thank you for your attention!

Thanks to the collaborators for all the prepared tools and materials, and for making my life easier!

MultiGrid detector test at CNCS [Anton Khaplanov]

Derived energy transfer at 3.807 meV from measurement

See Anton Khaplanov's talk Today 12:10 (Detectors 1)

- Chopper spectroscopy
- Measured quantities:
 - ToF
 - detection-coordinates

Energy transfer:

$$E_{trf} = E_{initial} - E_{final}$$

Validation

- Distinguish different sources of background
- Detailed analysis and quantification of background effects

Energy transfer reproduced with simulation at 3.807 meV