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Introduction to NCrystal

NCrystal is a fusion between harmonic, quasi-harmonic scattering cross section
models and highly optimised Monte Carlo sampling methods. It supports three and
only three types of user operations for single- and poly-crystals,

1. defining a crystalline material and its orientation.

2. calculating the total scattering cross section for a given incident energy and
momentum direction.

3. sampling the scattered neutron energy and momentum direction.
NCrystal is designed to be,

1. clean and portable. No external dependence.

2. minimalist. Less than 10 lines (3 lines in the case of powder) of user code to
reveal its full power.

3. ab initio. No tunable parameter.

4. multilingual. C and python bindings.
It is primarily developed by X.X. Cai and T. Kittelmann. Significant contributions have
been received from E. Klinkby in the process of theory development. It will be heavily
used by members of the ESS detector group to gather early user feedback.

It is currently available to users of the ESS detector group coding framework. It will be
made available in the official releases of Geant4 and McStas. The open-source
stand-alone distribution will also be made available.
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Progress of our validation work

The coherent elastic model has been bencharmed against data from the PUS powder
diffractometer at IFE Norway. We simulated the full-scale instrument from the reactor
moderator boundary to the instrument detectors in Geant4, including a Ge-511
monochromator and an alpha-Al2O3 powder sample 1.
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This talk is confined to the benchmark of the NCrystal inelastic model, which can
sample over 1.3 million/s/CPU scatterings 2 directly from an S(Q, ω) table based on a
rejection method. It can be initialized by

1. an S(Q, ω) table from a measurement of any material

2. an S(α, β) table from ENDF ( typically in ∼150ms)

3. vibrational density of state using the NCrystal static model (typically in ∼1.5s)

4. model Grüneisen parameters and thermal expansion data using the NCrystal
QHA model (typically in ∼1.8s)

1experimental data are kindly provided by Dr. Magnus H. Sørby
2speed estimated in a late 2014 main-stream laptop
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Method

The energy of a phonon in the views of three different theories.

I Modern ab initio methods provide a powerful mean to compute phonon
characteristics and mode grüneisen parameters from first principles.

I NCrystal supports the harmonic and quasi-harmonic theories.
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The static and QHA models in NCrystal
I We call the model that is based on the harmonic theory 3 the static model, the

equivalence of which can also be found in NJOY.
I We call the model that is based on the quasi-harmonic theory the QHA model.

The input of the model are the mode Grüneisen parameters and thermal
expansion data.

Calculated total cross section of single crystal Al at 100K, 300K and 800K are
compared with data compiled in EXFOR.
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3Alf Sjölander, Ark. Fys., 1958, 14, 315-371

5 / 13



The static model underestimates cross section at high temperature

The underestimation of the inelastic scattering scattering cross section in Al
by the static model.
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Benchmarking the phonon expansion calculation
against NJOY

We run NCrystal and NJOY using the same density of state in graphite at room
temperature, the discrepancies between the calculated S(α, β) are typically less than
0.1%.
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We noticed about 1.5% discrepancies in the integral cross sections in the 1/v energy
region. As the method NJOY used to check the convergence of the integral is unknown
to us, it is difficult for us to trace down the sources. But such discrepancies are
comparable with, if not much smaller than, the measurement uncertainties in EXFOR.
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Benchmarking the scattering kernel sampler
against the ace model, ENDF/B-VII water kernel, scattered energy distribution

We denote the sampling from a discrete ACE formated file as the ACE
model, and the sampling from an S(Q, ω) table as the COTS model.
Example of sampled energy distributions of 10 million incident 0.1 eV
neutrons are shown below.

0.00 0.02 0.04 0.06 0.08 0.10
energy, eV

0

50000

100000

150000

200000

250000

300000

350000

co
u
n
t

integral = 1e+07
mean     = 0.016491
rms      = 0.0175205
median   = 0.0111 ± 0.0001
min      = 0.000999719
max      = 0.161418
overflow = 81823

(a) ACE, mean energy 16.491 meV
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Benchmarking the scattering kernel sampler
against the ace model, ENDF/B-VII water kernel, scattered angular distribution

Example of sampled cosine angle distributions of 10 million incident 0.1 eV
neutrons are shown below.
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(c) ACE, mean consine angle 0.0805
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Benchmarking the static model 4

elemental crystals, against data
Comparisons with data compiled in EXFOR at room temperature, which is far
below the melting point of the materials.
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(b) Be
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(c) Cu
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(d) Ge

4Vibrational density of states are calculated using the QUANTUM ESPRESSO v6.0 + Standard Solid State Pseudopotentials v0.7, and
Phonopy 1.11.6.
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Benchmarking the static model
general crystals, against data

The important van der Waals forces in graphite and polyethylene can be treated
satisfactorily. Corundum and MgF2 are promising neutron filters.
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(e) graphite
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(f) polyethylene
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(g) alpha-Al2O3 (corundum)
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Data mining is possible
but how about the experimental validation?

Crystal atomic force constants can be calculated using DFT in a personal
computer or obtained from databases, for example the phonondb@kyoto-u
databased 5 made available by Dr. Atsushi Togo, which contains close to 600
crystalline materials. We show the room temperature cross sections of a few
random materials that are produced based on the force constants in the
database.
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To validate the these cross sections, experimental data are needed.

5http://phonondb.mtl.kyoto-u.ac.jp/database-mp.html
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Conclusion
We conclude that the numerical implementation of our inelastic cross section
model and final state sampler is accurate.

Also,
I Early access of NCrystal is possible by contacting us.
I A python-based package will also be released to enable users to

launcher DFT calculations and generate NCrystal input file or coherent
scattering kernel from a unit cell definition.

� �� �� �� ��

�����

�����

�����

�����

�����

�����

�����

�����

�
�
�
�
�
��
�
�

����

����

����

����

����

����

����

����

����

����

� �� �� �� ��

�����������

�����
�����
�����
�����
�����
�����
�����
�����

�
�
�
�
�
��
�
�

����
����
����
����
����
����
����
����
����

(a) coherent kernel
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(b) incoherent approximation kernel
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