TOPAZ experience: single crystal data

Diffraction DMSC meeting

Test experiment

Sr₁₄Cu₂₄O₄₁: telephone number Non magnetic

C_{chain} = 0.7 x C_{ladder} Non integer peaks Diffuse scattering

= magnetic experiment

Layout imensior oni Planning of the Actual control experiment Terminal for reduction Cluster

Instrument

Instrument controls

- Planning:
 - First run: orientation matrix+sample size
 - CrystalPlan: optimize Q-space coverage
 - Output: excel file with motors positions
 - Transferred to the instrument control computer
- Instrument control
 - Convert the excel file to a suitable format
 - Adjust parameters (temperature, counting time)
 - Launch acquisition

Instrument controls

- What is missing ?
 - No command line possibility => every action is done by modifying an excel file
 - No loops => 20 steps scans at 10 temperatures
 - Mistakes !!
- What should be improved
 - Counting time is expressed in accelerator charge (1.1x10¹¹ means nothing to the end user)
 - One station for every action (no network or mail transfer)
 - No feedback from data reduction !

Data reduction for diffraction

- Mantid on the ORNL cluster
 - Import events mode:
 - Convert to Q-space

- Apply Lorentz, efficiency, incident spectrum corrections
- Clustering and sorting by density
- FindPeaks using sorted cluster list
- Refine the orientation matrix
- Search for weak peaks at predicted positions
- Integration => (hkl),I,dI,angles,crystal parameters

Data reduction for diffuse scattering (and nice pictures)

- Mantid on the ORNL cluster
 - Import events mode:
 - Convert to Q-space

- Apply Lorentz, efficiency, incident spectrum corrections
- Clustering and sorting by density
- FindPeaks using sorted cluster list
- Refine the orientation matrix
- Binning into Q-space + export

Our particular case

- It works ... for crystallography
- 10 GB / temperature (20 nxs file/temperature)
- Long process:
 - Export to hkl: 1hr experiment = 30 mn reduction
 - Export to 3D space: 1 hr experiment = 4 hrs reduction (with 18 parallel jobs running ...)
- No real support for incommensurate structure
- No parallel peak integration (1 at a time ... x 20 000)

Data reduction

Data reduction on MAGiC

- Neutron flux 10 times higher than on TOPAZ
- Expected: 10⁷ counts/second (10⁸ in worst case)
- Polarization:
 - incident polarization: up/down
 - polarization axis: XYZ
 - on the fly change during a scan => 6 more channels to store
- 1 or 2 order of magnitude improvement mandatory !
- Current state: 1 day experiment => 1 month reduction to 3D space :/

Conclusion

- Data reduction
 - (Almost) everything is implemented in Mantid !
 - It works well ... but it is slow !
 - Needs to be adapted to magnetism
- Instrument control:
 - best way to contribute is to play with it
 - is there a dummy/virtual diffractometer with current instrument control available ?