

# Band-GEM Readout Meeting

Milan-ESS Meeting 11<sup>th</sup> April 2017



- 32 channels board
- 29 devices per Slice of the detector (261 total)
- Small FPGA with ethenet connectivity on shared cable
- Integrated 1 Gbps switch for deisy chain connection
- Power supply, connectivity and syncronization on the same cable.
- Possibility to distribute the number of board in daisy chain to optimize the bandwidth



## The GEMINI chip: brief reminder





#### **Power Supply:**

- Input voltage: 24/48 V to limit current in cables
- Switching LT Power uModule to convert from input voltage to 6V
- 6V rail power a secondary LT uModule to create FPGA and memory voltages
- Ultra low noise LDO to power Gemini SoC Chip Preferred: SmartFusion 2
- - **Extremely Low Power**
  - No external flash required
- Alternative: Zyng 7020 (actual board is using Zynq)

### **Key Questions**



- 32 Channels per board/FPGA. Would 64 channels work?
  - Geometry
  - Pin connections (does Gemini have to be differential out)
  - Data rate/bandwidth
- ESS has a standard analogue connector for it's generic front ends
- Gemini chip, revisions, still as described last year? No chips to ESS?
- Desired level of integration??

Full integration to front end, run assister firmware etc.

Module integration, bridge for each octant

System level integration, bridge at master.



### Summary of Meeting



To be compiled during the meeting....