

Studies on VESPA detectors

• Proposed by N. Rhodes & D. Raspino (on 10th-5-'17):

Cylindrical ³He tubes; L=203.2 mm, long (*i.e.* 8"); W=7.938 mm, internal diameter (*i.e.* 5/16"); ³He pressure up to $p \leq 20$ atm.

Proposed by M. Zoppi (in 2015):

"Squashed" ³He tubes; *L*=203.2 mm, long *(i.e.* 8"*)*; *2a*=12.065 mm *(i.e.* 19/4"*)*, *2b*≈2.54 mm *(i.e.* 1/10"*)*; ³He pressure *p*=20 atm.

• How to arrange them in the VESPA modules?

1. Backscattering $(\theta_m = 130^\circ)$: 176.16 mm illuminated. <u>20 tubes</u> can be accommodated, if a 8.8 mm gap per tube is enough. Solid angle: 0.0612 sr. Problems: the last 3 tubes would have $\lambda_f < 3.97$ Å (Be cut-off). <u>17 tubes</u> left !

2. Extreme Backscattering (θ_m =150°): 144.64 mm illuminated. <u>17 tubes</u> can be accommodated, if a 8.5 mm gap per tube is enough. Solid angle: 0.0212 sr.

- What about the VESPA "elastic line"?
- we don't have neutrons with $\lambda_0 > 4.7$ Å ! –
- **1.** Backscattering ($\theta_m = 130^\circ$): Out of <u>17 tubes</u> (4.00 Å < λ_f <4.83 Å) <u>14</u> exhibit the "elastic line" *(i.e.* from <u>4</u>th to <u>17</u>th).
- Extreme Backscattering (θ_m=150°): Out of <u>17 tubes</u> (5.59 Å <λ_f<6.02 Å) <u>none</u> exhibits the "elastic line".

• Detector capture efficiency in the 3.5 Å $<\lambda_f < 6.5$ Å range

 $p(^{3}\text{He}) = 11$ bar is surely enough!

 What is the effect of the detector width on the energy resolution?

There are three detector- ΔE components:

- <u>Radial</u> \propto W
- •<u>Thickness</u> (a) \propto s. d. of the n. free path: $\sigma_{fp} = \sigma_{fp}(\lambda, p)$
- •<u>Thickness</u> (b) \propto s. d. of curvature "error" $\sigma_c \approx (1/\sqrt{720}) L^2/r$

Proposed by MZ

•*W*=12 mm, *s*=2.5 mm (elliptical) •<u>thickness</u> $(a^2+b^2)^{0.5}$ (at *p*=20 bar) • σ_{fp} = 1.104÷0.932 mm (3.5 Å< λ_f < 6.5 Å)

•σ_c= 3.182 mm (150 deg.); 3.348 mm (130 deg.)

Proposed by ISIS

•*W*=7.9 mm, *s*=7.9 mm (circular) •<u>thickness</u> $(a^2+b^2)^{0.5}$ (at *p*=11 bar) • σ_{fp} = 1.786÷1.545 mm (3.5 Å< λ_f < 6.5 Å)

•σ_c= 3.182 mm (150 deg.); 3.348 mm (130 deg.)

First estimates of the peak neutron counts on the EL

<u>Fictitious McSample sample</u>: purely incoherent elastic scatterer with $\sigma_t(H)$, scattering power ~5% for 3.7 meV< E_0 <5.4 meV. <u>Low-resolution mode</u> @ 5 MW with the straight tapered guide.

 $\begin{array}{l} \textbf{Backscattering} \ (\textbf{\theta}{\approx}130^{o}) \text{:} \ \underline{\textbf{14 ideal McStas detectors}} \ (8 \ \text{mm} \times 20 \ \text{mm}) \\ [4.00 \ \text{\AA}{<}\lambda_{f}{<}4.66 \ \text{\AA}]. \end{array}$

Example: tube **no. 17** (the most intense), $\lambda_f = 4.00 \text{ Å} \rightarrow E_f = 5.112 \text{ meV}$

- \Rightarrow <u>Peak rate</u>, <u>I</u>= 4.65×10⁴ n/s;
- \Rightarrow Mean rate, $l= 2.78 \times 10^4$ n/s.

Upper limit for ³He tube **count rate**: \approx 40-50 kHz peak rate per tube.

<u>Just about</u> for the *elastic line*, so *inelastic part* is surely all right!

Why? Let us take a standard calibration sample: **HMT** @ T=20 K The maximum of the <u>elastic line</u> is **46.8** times larger that of the <u>inelastic part</u> (ω =5.15 meV) in a raw ToF spectrum *I*(θ ,*t*) (with θ =130° & *E*_f=5 meV)!

