

ESS BPM Firmware

Status of BPM firmware

ESS FPGA development framework

- ESS platform
- ESS DEVENV for IKCs
- BPM Status

ESS FPGA development framework

- ESS platform
- ESS DEVENV for IKCs
- BPM Status

Beam Diagnostics

The Beam Diagnostics work package includes the development of all beam instrumentation for the ESS linac:

- BLM (Beam Loss Monitor)
- BCM (Beam Current Monitor)
- BPM (Beam Position Monitor)
- FC (Faraday Cup)
- WS (Wire Scanner)
- NPM (Non-Invasive Profile Monitor)
- EMU (Emittance Measurement Unit)
- LBM (Longitudinal Bunch Profile Monitor)

etc.....

Integrated Control System (ICS)

The ESS Control System is a complex network of hardware, software and configuration databases that integrates the operations of all the various parts of the Accelerator, Target, Instrument and Conventional Facility infrastructures.

ESS has a large network of laboratories to exchange knowledge, personnel and experience with, and that in many cases will contribute directly to the project through In-Kind Contributions (IKCs)

MTCA.4 AMC

PLATFORM
STRUCK
SIS8300KU/L2

DWC8300

MIGRATION

ICS
PLATFORM
IOXOS
IFC1420 (??)

ESS FPGA development framework

- ESS platform
- ESS DEVENV for IKCs
- BPM Status

ICS Continuous Integration/Delivery

FPGA design/delivery

http://semver.org/

MAJOR.MINOR.PATCH

- MAJOR version when you make incompatible API changes
- MINOR version when you add functionality in a backwards-compatible manner
- PATCH version when you make backwards-compatible bug fixes

Frameworks on bitbucket

- STRUCK project contains different repository for FW and SW for the SIS8300L/L2/KU, each of it has 2 branch for the 2 RTM used:
 - for BCM (SIS8900 RTM);
 - for BPM (DWC8300 downconverter RTM);

•

 IOxOS project contains the TOSCA III firmware for IFC1410 that support streaming of data from a ADC 3110/3111 - FMC Mezzanine Card

ESS FPGA development framework

- ESS platform
- ESS DEVENV for IKCs
- BPM Status

BPM

What does it include?

HW: RTM-Digitizer

Overview RTM-Digitizer

Overview RTM-Digitizer

Supported FW functionality:

- Supports both pulsed and CW operation;
- Operation modes:
 - ADC raw data
 - Near-IQ sampling
 - FIR filtering
 - Single channel phases and amplitudes
 - BPM phases relative to Phase reference line
 - BPM positions calculations
 - Self trigger
 - Position interlock

Near or Non IQ Sampling

$$S_i = I \cdot \sin(\varphi_i) + Q \cdot \cos(\varphi_i)$$

$$I = \frac{2}{N} \sum_{i=0}^{N-1} s_i \cdot \sin \left[i \cdot 2\pi \cdot \frac{M}{N} \right]$$

$$Q = \frac{2}{N} \sum_{i=0}^{N-1} s_i \cdot \cos \left[i \cdot 2\pi \cdot \frac{M}{N} \right]$$

- Less sensitive to:
 - Nonlinearities
 - DC-offset
 - Noise
- Will cost in delay

Operation

XXX_trigger : commes from timing control system.

BPM operationell

BPM active

- * At these transitions all visible new parameters are taken into use.
 - ** At this transition interrupt PULSE_DONE is raised

Operations

Init:

SW: R/W registers.

FPGA: Nothing. **Idle:**

SW: R/W memory not allowed

SW: All memory

accesses allowed

SW: Read data, R/W registers.

FPGA: Nothing.

Active pulse:

SW: R/W registers.

FPGA: Store external and internal signals.

Wait ADC:

SW: R/W registers.

FPGA: Wait ADC store done.

After PULSE_DONE IRQ is received, SW has access to:

- From memory:
 - Raw samples of all 9 input channels, plus one measurement channel or
 - Raw samples from 1 BPM, plus all measurement channels.
- From registers (for fast GUI displaying)
 - Amplitude and phase of Phase-ref, position and antenna-sum at PULSE_END.

PDR's implementation numbers

- Utilization of FPGA: 75% slices
- Max Clk period ~10 ns (100 MHz)
- Delay: FW 97cc, ADC 13cc

Input to interlock delay ~1.1 us

Today's implemetation number

PDR's Next step

Use and test the design as much as possible

- Optimizations, if required.
- Move to the next generation of digitizers

- Reduce latency.
- Get access to all internal data at all times.
- Get space to add new functionality.
- Test
- Test
- And some more testing

Next step

- Firmware has been tested on the STRUCK SIS8300L (Xilinx Virtex 6 FPGA) and successfully ported with same performance to STRUCK SIS8300KU (Xilinx Kintex Ultrascale);
- We plan to migrate from the Struck framework (not AXI based) to a more reliable and maintainable AXI based framework;
- When IOxOS IFC1420 (with same FPGA mounted) it will replace the SIS8300KU (we wish...) easily;

Questions

