

MonteCarlo results: nBLM response to ESS scenarios

Laura Segui IRFU-CEA/Saclay

nBLM PDR1.2 review meeting 10/07/2017

OUTLOOK

- Simulations strategy
- Accidental vs 0.01 W/m scenarios
 - Slow module
 - Fast module
- Detector position studies
- Conclusions

Discussed in PDR1.1

- Simulations performed by the BI-ESS group and summarized in report CHESS, ESS-0066428, 2016: I. Dolenc Kittelman, "Report regarding the MC simulation for BLM-focus on the nBLM" [1]
 - Simulate loss scenarios, save secondary produced particles that enter in a nBLM phantom volume placed along the DTL.
- The output (*mcpl* format) → the input in the nBLM simulations
- In the mcpl file there are for each produced particle:
 - Particle energy
 - Momentum
 - Position
 - Time
 - Plus a pdgCode to identify the particle
- Time from ESS simulation has been added to the G4-nBLM simulation GlobalTime
 - Time from the ESS simulation == time since proton lost to particle creation
 - G4-nBLM *GlobalTime* == time since particle creation in the geant4 simulation to interaction in the gas in the nBLM chamber.
 - → Therefore, we are taking into account the total time since lost starts until detection in the nBLM detectors. In [1] it is specified that the lost has been considered instantaneous and therefore, the time of the development of the lost is not included.

DE LA RECORRICOR À L'INDUSTRIE

- 13 localized loss scenarios simulated in [1]
 - All in DTL-1 and DTL-5
 - Known number of protons, fix energy, lost in a point
- Used 7/13 as the nBLM-G4 input
- Different parameters some of them
 - Pencil beam vs Gaussian ($\sigma_{xy} = 0$ or 1)
 - Opposite direction than the nBLM phantom volume

ESS file	Loss location	Proton Energy (MeV)	Protons simulated	Bunches simulated	Neutrons produced in scenario	N's/ bunch	Comments
sim2-0	Mid DTL-1	11.5	6.00E+08	5.45E-01	2.90E+05	5.31E+05	Max θ in DTL1, 50mrad, σ_{xy} = 1mm
sim2-1	¾ DTL-1	17.9	1.00E+08	9.09E-02	2.33E+05	2.56E+06	Max θ in DTL1, 50mrad, $\sigma_{xy} = 1$ mm
sim2-3	Mid DTL-1	11.5	6.00E+08	5.45E-01	2.86E+05	5.24E+05	Same as sim2-0 but $\varphi = -90^{\circ}$, $\sigma_{xy} = 1$ mm
sim2-8	Start DTL-5	71.8	4.00E+07	3.64E-02	4.33E+06	1.19E+08	Max θ in DTL5 10 mrad, $\sigma_{xy} = 0$
sim2-11	End DTL-5	86.5	4.00E+07	3.64E-02	4.38E+06	1.20E+08	Max θ in DTL5 10 mrad, σ_{xy} = 1mm
sim2-12	End DTL-5	86.5	4.00E+07	3.64E-02	3.94E+06	1.08E+08	Same as sim2-11 but $\sigma_{xy} = 0$
sim2-13	Mid DTL-5	79.3	4.00E+07	3.64E-02	3.94E+06	1.08E+08	Max θ in DTL5 10 mrad, $\sigma_{xy} = 0$

- nBLM geometry defined in Geant4
 - Geometry simulated: "standard" one
 - Geometry optimization first PDR. Finish with tests
- ESS scenarios output read as input
 - Used only the produced neutrons as input (so far)
 - Simulate > 10⁸ neutrons per run
- nBLM placed at different locations around the DTLs
 - 4 on top of each DTL from where the lost is produced
 - Placed following recommendations in [1]
 - Use same reference system
 - Studied also position between tanks and on side
- Simulated accidental losses:
 - Known number of protons at fix energy in a point
 - Used to scale to the case of 1% 1W/m in 14Hz

Parameter	"Standard" value					
Slow module						
Cd thickness	1.0 mm					
Polyethylene	4.0					
thickness	4.0 cm					
Aluminium	1.0					
chamber thickness	1.0 mm					
B ₄ C thickness	1.5 μm					
Drift Distance	5.0 mm					
Micromegas surface	10x10cm ²					

Fast module					
Polypropylene	2.0 mm				
thickness					
Aluminium	50.0 nm				
internal layer	30.0 1				
Aluminium	1.0 mm				
chamber thickness					
Drift Distance	5.0 mm				
Micromegas surface	10x10cm ²				

- nBLM geometry defined in Geant4
 - Geometry simulated: "standard" one
 - Geometry optimization first PDR. Finish with tests
- ESS scenarios output read as input
 - Used only the produced neutrons as input (so far)
 - Simulate > 10⁸ neutrons per run
- nBLM placed at different locations around the DTLs
 - 4 on top of each DTL from where the lost is produced
 - Placed following recommendations in [1]
 - Use same reference system
 - Studied also position between tanks and on side
- Simulated accidental losses:
 - Known number of protons at fix energy in a point

nBLM RESPONSE TO ESS SCENARIOS

Analysis

- Every neutron that deposit energy in the nBLM gas volume is recorded and saved
- Only events that deposit >10 keV are considered
- The electronics and electric field are not simulated
 - Small drift volume → any particle detected
- To study response under ESS scenarios calculate:
 - Expected rates
 - Time response.
 - Largely studied in [2]
- For the rates:
 - Frequency in DTL shorter than the time response of the slow detector (100% events in ~180 μs)
 - Bunches will start overlapping in case of accidents
 - Calculate how many counts lost in 1st μs
 - For 0.01 W/m loss considered peak count rate (equal loss in each pulse)

Accidents, Slow Module, on top

Accidents, Slow Module, on top

Accidents, Slow Module, on top

Lowest and highest estimated high rate

- Compare scenarios mid DTL-1 (yellow) and midDTL1 -90 (purple) (sim2_0 and sim2_3)
- Results obtained are the same within $\sim 2\sigma$ maximum in both cases.
- Also comparing them if placing the detector on the side (next slides).

Pencil-beam vs Gaussian (1mm)

- Compare End DTL-5 magenta and blue
- Very similar result on loss, smaller further from loss for pencil beam

Accidents in DTL-1

Accidents in DTL-5

ESS input	nBLM	c/bunch	Accidents c in the first µs (MHz)
	det1		
Sim2-0	det2	1.70 ± 0.04	16.70 ± 4.09
Mid DTL-1	det3	7.45 ± 0.04	59.81 ± 7.73
	det4	3.21 ± 0.03	13.82 ± 3.72
	det1		
Sim2-1	det2	1.24 ± 0.05	7.20 ± 2.68
@ 3/4 DTL-1	det3	4.14 ± 0.10	28.60 ± 5.35
	det4	11.57 ± 0.16	80.76 ± 8.99
	det1		
Sim2-3	det2	1.58 ± 0.03	8.21 ± 2.87
Mid DTL-1 (-90°)	det3	6.02 ± 0.05	54.28 ± 7.37
	det4	2.95 ± 0.04	16.64 ± 4.08

ESS input	nBLM	c/bunch	Accidents c in the first µs (GHz)
	det1	2793.69 ± 17.38	26.83 ± 0.16
Sim2-8	det2	815.91 ± 9.40	0.59 ± 0.08
Start DTL5	det3	409.36 ± 6.65	0.20 ± 0.04
	det4	258.34 ± 5.29	0.06 ± 0.002
	det1	314.18 ± 5.85	0.14 ± 0.04
Sim2-11 End DTL-	det2	336.00 ± 6.05	0.14 ± 0.04
5	det3	599.35 ± 8.09	0.26 ± 0.05
	det4	1174.69 ± 11.32	0.75 ± 0.09
Sim2-13 Mid DTL- 5	det1	530.48 ± 7.22	0.25 ± 0.05
	det2	827.69 ± 27.76	0.45 ± 0.07
	det3	3758.40 ± 42.95	51.79 ± 0.23
	det4	769.65 ± 19.44	0.49 ± 0.07

nBLM RESPONSE TO ESS SCENARIOS – 1% 1W/m SLOW

Scale down accidents to 1% 1W/m in 14Hz, **Slow** detector, on top

Solid lines: 1% 1W/m lost Dashed lines: accidents

Accidents 10 MHz – 60GHz

1% 1W/m 0.1 kHz – 700 kHz

nBLM RESPONSE TO ESS SCENARIOS – 1% 1W/m SLOW

Accidents in DTL-1

- Rates for $1\%1W/m \sim 0.1-1 \text{ kHz}$
- Factor ~10⁴ between accidents and 1% 1W/m

Accidents in DTL-5

- Rates for 1%1W/m~ 5 68 kHz
- Factor ~10⁵ between accidents and 1% 1W/m

ESS input	nBLM	1% 1W/m c/ms (kHz)	Accidents c in the first µs (MHz)	ESS input	nBLM	1% 1W/m c/ms (kHz)	Accidents c in the first µs (GHz)
	det1				det1	55.25 ± 0.34	26.83 ± 0.16
Sim2-0	det2	0.21 ± 0.01	16.70 ± 4.09	Sim2-8	det2	16.14 ± 0.19	0.59 ± 0.08
Mid DTL-1	det3	0.92 ± 0.01	59.81 ± 7.73	Start DTL5	det3	8.10 ± 0.13	0.20 ± 0.04
	det4	0.396 ± 0.003	13.82 ± 3.72		det4	5.11 ± 0.10	0.06 ± 0.002
	det1			Sim2-11 End DTL-5	det1	5.17 ± 0.10	0.14 ± 0.04
Sim2-1	det2	0.098 ± 0.004	7.20 ± 2.68		det2	5.53 ± 0.10	0.14 ± 0.04
@ 3/4 DTL-1	det3	0.33 ± 0.01	28.60 ± 5.35		det3	9.87 ± 0.13	0.26 ± 0.05
	det4	0.62 ± 0.01	80.76 ± 8.99		det4	19.34 ± 0.18	0.75 ± 0.09
	det1				det1	9.56 ± 0.13	0.25 ± 0.05
Sim2-3 Mid DTL-1 (-90°)	det2	0.195 ± 0.003	8.21 ± 2.87	Sim2-13	det2	14.92 ± 0.50	0.45 ± 0.07
	det3	0.74 ± 0.01	54.28 ± 7.37	Mid DTL-5	det3	67.72 ± 0.77	51.79 ± 0.23
	det4	0.364 ± 0.004	16.64 ± 4.08		det4	13.87 ± 0.35	0.49 ± 0.07

nBLM RESPONSE TO ESS SCENARIOS – FAST

Same studies for the **FAST** detector, placed also on top Accidents and scale down them to 1% 1W/m in 14Hz, Lower stats in some of the cases studied

nBLM RESPONSE TO ESS SCENARIOS – FAST

- Rates for 1%1W/m ~10 MHz (DTL-1)

~100 MHz – 28 GHz (DTL-5)

Factor ~10⁴ between accidents an d 1% 1W/m

ESS input	nBLM detector	c/bunch	Accidents c/µs (MHz)	1% 1W/m c/ms (kHz)	
sim2-0-DTL Mid DTL1	det3 0.060 ± 0.00		22.44 ± 2.54	0.008 ± 0.001	
sim2-1-DTL	det3	0.030 ± 0.005	10.65 ± 2.09	0.0024 ± 0.0005	
3/4 DTL1		0.000			
sim2-8-DTL	det1	52.70 ± 1.69	18569.94 ± 594.71	1.04 ± 0.03	
Start DTL5	det2	1.41 ± 0.28	495.20 ± 97.12	0.028 ± 0.006	
sim2-11-	det3	0.93 ± 0.16	326.50 ± 56.00	0.015 ± 0.003	
DTL End DTL5	det4	5.51 ± 0.39	1939.82 ± 136.49	0.091 ± 0.006	
sim2-12-	det3	0.88 ± 0.21	311.14 ± 73.34	0.015 ± 0.003	
DTL End DTL5	det4	3.83 ± 4.34	1348.27 ± 152.66	0.063 ± 0.007	
sim2-13-	det3	82.28 ± 2.01	285970.55 ± 707.65	1.48 ± 0.04	
DTL Mid DTL5	det4	0.38 ± 0.13	132.85 ± 46.97	0.007 ± 0.002	

Accidents in the fast detector
Up to 80c/bunch
→80c in ~ 3ns

1%1W/m in the fast detector
Up to 1c/ms → ~3c/pulse
Over 300 pulses, already
300 counts

nBLM RESPONSE TO ESS SCENARIOS – CONCLUSIONS

In summary

In the DTLs

		Rates
	1% 1W/m	Accidents (after 1µs)
Slow	0.1 – 68 kHz	10MHz – 60 GHz
Fast	1 – 400 Hz	2-700 MHz

Important to know expected neutron background

- The expected rates for a localized loss or for a scenario of 1% 1W/m emission are very different.
 - Recognize an increment in the emitted neutrons in case of a problem within 1μs
 - With the fast module in much shorter time (few ns).
- We need to include the time for the electronics and signal processing.

BUT

- The huge rates expected based on the Montecarlo simulations, for some cases, are too high for individual event counting, as we are talking about GHz.
- Several options to reduce these rates, which can be done during the commissioning phase, are:
 - \triangleright Reducing the B4C thickness (range 150 nm 2 μ m) \rightarrow factor more than 10 reduction
 - Using natural Boron instead of ¹⁰B

→ factor 5 reduction

Read from just 1 to the 4 strips

→ factor 4

- Or include current mode in the software and firmware
 - The effect on the sensitivity of the system will be estimated only after performing the planned tests or even during the commissioning phase.

DETECTOR POSITION

- Results shown so far were obtained with the detector on top of the accelerator
- Further studies carried out with the detector
 - on the lateral (65 cm from accelerator walss) and
 - in-between the tanks (centred with the beam)
 - Only fast module

LATERAL

Two scenarios used: sim2_0 (mid DTL1) and sim2_13(mid DTL5)

DETECTOR POSITION

In-between

- > Four lost scenarios used
 - sim2_0 (middle of DTL-1)
 - sim2-1 (at ¾ of DTL-1)
 - sim2-11 and sim2-12 (at ¾ of DTL-5)
- Low statistics
- ➤ Higher response closer to loss (1-90 MHz at low E, 0.8-5 GHz at high energy)
 - \rightarrow During 1% 1W/m \rightarrow 0.5 11 Hz and 20-300 Hz (DTL1 and DTL5)

ESS input	nBLM detector between	Bunches simulated	Counts detected	c/bunch	c/μs (MHz)
sim2-0-DTL	DTLs 1-2	4315.59	16 ± 4	0.004 ± 0.001	1.36 ± 0.34
(mid DTL-1)	DTLs 2-3	4315.59	2 ± 1	Low stats	Low stats
sim2-1-DTL	DTLs 1-2	429.69	119 ± 11	0.28 ± 0.03	97.52 ± 8.94
(¾ DTL-1)	DTLs 2-3	429.69	2 ± 1	Low stats	Low stats
sim2-11-DTL (end DTL-5)	End of 5	9.17	22 ± 5	2.40 ± 0.51	845.07 ± 180.17
sim2-12-DTL	DTLs 4-5	10.19	2 ± 1	Low stats	Low stats
(end DTL-5)	End of 5	25.46	381 ± 20	14.96 ± 0.77	5268.63 ± 269.92

DETECTOR POSITION -- REMARKS

- Good coverage of accelerator can help identifying position of loss
 - Detector on top or accelerator or on side gives more or less same signal, redundancy?
- ❖ In-between detectors can also give information both in the case of 0.01 W/m loss or a higher accident loss.
- * Repartition as suggested in [1] is
 - 5 nBLM modules in the MEBT section
 - 11 in the DTLs sections → Agreed to increase it
 - 14 in the spokes sections
 - 4 in the High β section
 - Total 34 over 42 that needs to be deliver.
- Only response in DTLs section studied by simulations
- Coverage per region important to follow with rest of the design:
 - ❖ ADC cards and IOC CPU per rack and cables through stubs

Threshold between "thermal" and fast neutrons

- In [1] it is suggested two possible thresholds to separate between "thermal" and fast neutrons.
 - 0.5 MeV or
 - 50 keV.
- This is naturally obtained in the fast detector
 - only sensitive to initial neutrons energies of ~ 0.2 MeV.
- In the case of the slow we have some merging playing with the Mirrobor thickness, however, the limits suggested in [2] seems quiet unrealistic as will imply a high efficiency loss.

SLOW Detector but with a initial flux constante in all E

THANK YOU

References

- [1] I. Dolenc Kittelman, "Report regarding the MC simulation for BLM-focus on the nBLM," CHESS, ESS-0066428, 2016.
- [2] nBLM PDR12,

BACK-UP

USING THE ACCIDENTS TO SCALE TO 1W/m

Method

- 1. Calculate the power lost in the scenario: $W = Ep \times I = Ep \times Np$
 - Assume Np per second
- 2. Used it to normalize the events detected in the scenario to the case of 1W/m
- 3. Normalize also by the number of neutrons we simulate, N_N , and the number of neutrons produced in the scenario, N_N^{Simu}
- 4. Normalize by the time, for example, assume lost is produced per pulse (2.86ms)
 - We divide by it and pass it to μs that is the time of reaction needed

$$c_{det} * \frac{N_N}{N_N^{Simu}} * \frac{1W/m}{xW/m} * \frac{1}{Active Time}$$

ESC Input	Position of	Ep	Ep	Np	N _N	W/m/s
ESS Input	the loss	(MeV)	(J)	ТМР	INN	VV / 111/ S
sim2-0-DTL	Mid DTL-1	11.5	1.84 x 10 ⁻¹²	6.00×10^8	2.90×10^5	1.10×10^{-3}
sim2-1-DTL	3/4 DTL-1	17.9	2.86 x 10 ⁻¹²	1.00×10^8	6.68×10^4	2.86 x 10 ⁻⁴
sim2-3-DTL	Mid DTL-1	11.5	1.84 x 10 ⁻¹²	6.00×10^8	2.86×10^5	1.10×10^3
sim2-8-DTL	Start DTL-5	71.8	1.15 x 10 ⁻¹¹	4.00×10^7	4.33×10^6	4.60×10^4
sim2-11-DTL	End DTL-5	86.5	1.38 x 10 ⁻¹¹	4.00×10^7	4.38×10^6	5.54×10^4
sim2-12-DTL	End DTL-5	86.5	1.38×10^{-11}	4.00×10^7	3.94×10^6	5.54×10^4
sim2-13-DTL	Mid DTL-1	79.0	1.26 x 10 ⁻¹¹	4.00×10^7	3.94×10^6	5.06×10^4

nBLM RESPONSE TO ESS SCENARIOS – 1% 1W/m SLOW

Scale down accidents to 1% 1W/m in 14Hz, **Slow** detector, on top

Accidents in DTL-1

- Rates for $1\%1W/m \sim 0.1-1 \text{ kHz}$
- Factor ~10⁴ between accidents and 1% 1W/m

ESS input	nBLM	c after normalization	1% 1W/m c/ms (kHz)	Accidents c in the first µs (MHz)
	det1			
Sim2-0	det2	842 ± 20	0.21 ± 0.01	16.70 ± 4.09
Mid DTL-	det3	3685 ± 21	0.92 ± 0.01	59.81 ± 7.73
	det4	1586 ± 13	0.396 ± 0.003	13.82 ± 3.72
	det1			
Sim2-1	det2	393 ± 17	0.098 ± 0.004	7.20 ± 2.68
@ 3⁄4 DTL-1	det3	1317 ± 31	0.33 ± 0.01	28.60 ± 5.35
	det4	3678 ± 52	0.62 ± 0.01	80.76 ± 8.99
Sim2 2	det1			
Sim2-3 Mid DTL-	det2	779 ± 14	0.195 ± 0.003	8.21 ± 2.87
	det3	2978 ± 26	0.74 ± 0.01	54.28 ± 7.37
(-90°)	det4	1458 ± 19	0.364 ± 0.004	16.64 ± 4.08

nBLM RESPONSE TO ESS SCENARIOS – 1% 1W/m SLOW

Accidents in DTL-5

- Rates for 1%1W/m~ 5 68 kHz
- Factor ~10⁵ between accidents and 1% 1W/m

ESS input	nBLM	c after normalization	1% 1W/m c/ms (kHz)	Accidents c in the first µs (GHz)
	det1	$(22.12 \pm 0.14)10^4$	55.25 ± 0.34	26.83 ± 0.16
Sim2-8	det2	$(6.46 \pm 0.07)10^4$	16.14 ± 0.19	0.59 ± 0.08
Start DTL5	det3	$(3.24 \pm 0.05)10^4$	8.10 ± 0.13	0.20 ± 0.04
	det4	$(2.05 \pm 0.04)10^4$	5.11 ± 0.10	0.06 ± 0.002
	det1	$(2.07 \pm 0.04)10^4$	5.17 ± 0.10	0.14 ± 0.04
Sim2-11	det2	$(2.22 \pm 0.04)10^4$	5.53 ± 0.10	0.14 ± 0.04
End DTL-5	det3	$(3.95 \pm 0.05)10^4$	9.87 ± 0.13	0.26 ± 0.05
	det4	$(7.74 \pm 0.07)10^4$	19.34 ± 0.18	0.75 ± 0.09
	det1	$(3.83 \pm 0.05)10^4$	9.56 ± 0.13	0.25 ± 0.05
Sim2-13 Mid DTL-5	det2	$(5.98 \pm 0.20)10^4$	14.92 ± 0.50	0.45 ± 0.07
	det3	$(27.12 \pm 0.31)10^4$	67.72 ± 0.77	51.79 ± 0.23
	det4	$(5.56 \pm 0.14)10^4$	13.87 ± 0.35	0.49 ± 0.07

nBLM RESPONSE TO ESS SCENARIOS – FAST

- Rates for 1%1W/m ~10 MHz (DTL-1)
 ~100 MHz 28 GHz (DTL-5)
- Factor ~10⁴ between accidents an d 1% 1W/m

ESS input	nBLM detector	c/bunch	Accidents c/μs (MHz)	c after normalization	1% 1W/m c/ms (kHz)
sim2-0-DTL Mid DTL1	det3	0.060 ± 0.007	22.44 ± 2.54	32 ± 4	0.008 ± 0.001
sim2-1-DTL 3/4 DTL1	det3	0.030 ± 0.005	10.65 ± 2.09	10 ± 2	0.0024 ± 0.0005
sim2-8-DTL	det1	52.70 ± 1.69	18569.94 ± 594.71	4180 ± 134	1.04 ± 0.03
Start DTL5	det2	1.41 ± 0.28	495.20 ± 97.12	111 ± 22	0.028 ± 0.006
sim2-11-DTL	det3	0.93 ± 0.16	326.50 ± 56.00	61 ± 11	0.015 ± 0.003
End DTL5	det4	5.51 ± 0.39	1939.82 ± 136.49	363 ± 26	0.091 ± 0.006
sim2-12-DTL	det3	0.88 ± 0.21	311.14 ± 73.34	58 ± 14	0.015 ± 0.003
End DTL5	det4	3.83 ± 4.34	1348.27 ± 152.66	252 ± 29	0.063 ± 0.007
sim2-13-DTL	det3	82.28 ± 2.01	285970.55 ± 707.65	5940 ± 145	1.48 ± 0.04
Mid DTL5	det4	0.38 ± 0.13	132.85 ± 46.97	27 ± 10	0.007 ± 0.002

DETECTOR POSITION

In-between

- Four lost scenarios used
 - sim2_0 (middle of DTL-1)
 - sim2-1 (at ¾ of DTL-1)
 - sim2-11 and sim2-12 (at ¾ of DTL-5)
- Low statistics
- ➤ Higher response closer to loss (1-90 MHz at low E, 0.8-5 GHz at high energy)

ESS input	nBLM detector between	Bunches simulated	Counts detected	c/bunch	c/µs (MHz)	1% 1W/m c/μs
sim2-0-DTL	DTLs 1-2	4315.59	16 ± 4	0.004 ± 0.001	1.36 ± 0.34	4.78E-07
(mid DTL-1)	DTLs 2-3	4315.59	2 ± 1	Low stats	Low stats	
sim2-1-DTL	DTLs 1-2	429.69	119 ± 11	0.28 ± 0.03	97.52 ± 8.94	1.10E-05
(¾ DTL-1)	DTLs 2-3	429.69	2 ± 1	Low stats	Low stats	
sim2-11-DTL (end DTL-5)	End of 5	9.17	22 ± 5	2.40 ± 0.51	845.07 ± 180.17	1.98E-05
sim2-12-DTL	DTLs 4-5	10.19	2 ± 1	Low stats	Low stats	
(end DTL-5)	End of 5	25.46	381 ± 20	14.96 ± 0.77	5268.63 ± 269.92	3.08E-04

- Two approaches to normalize the number of detected events, $\emph{c}_{\textit{det}, \text{ in the nBLM modules}}.$
- Main Q's: How many protons of each energy have been produced?

Method

- 1. Assume the protons simulated in the ESS scenario were distributed evenly along the 40 m $\rightarrow N_p^{Simu}/m$
- 2. We can obtain the proton energy along the accelerator distance [3].
 - Its ~ linear along the DTLs
- 3. Calculate how many protons of the energy in the region are needed to:
 - 1. To have $1W/m \rightarrow N_p$
 - 2. Or the other approach is to use [4] with a powerloss per meter calculation. From the expected loss we calculate $\rightarrow N_P$
- 4. Obtain the number of neutrons/m produced for the positions we located the nBLM $\rightarrow N_N^{Simu}/m$
- 5. Normalize by the number of neutrons we simulated $\rightarrow N_N$
- 6. We are assuming that the only protons that contribute to the lost produced in a given region are the ones in this region.

$$c_{det} * \frac{N_P}{N_P^{Simu}} * \frac{N_N}{N_N^{Simu}/m} * \frac{1}{Active Time}$$

Similarly to the normal case, we have to know the normalization factor

Method

- 1. Calculate N_p needed to produce a loss of 1W/m taking into account the energy of the proton at each position.
- 2. 10^8 protons were simulated- -> assume again that they have been distributed uniformly along the DTLS --> N_p^{simu} as before, $N_p^{simu} = 10^8/40$
- 3. Obtain the number of neutrons produced/meter $\rightarrow N_N^{\text{Simu}}/m$
- 4. Normalize by the number of neutrons simulated $\rightarrow N_N$
- 5. Also in this case we are assuming that the only protons that contribute to the lost produced in a given region are the ones in this region.

$$c_{det} \cdot \frac{N_N}{N_N^{Simu}} \cdot \frac{1W/m}{x W/m} \cdot \frac{1}{\text{Active Time}}$$

UNIFORM SLOW

1% 1W/m in 14 Hz				
Z position	c/ms (kHz)			
(cm)				
-2649				
-2455	0.004 ± 0.001			
-2261	0.016 ± 0.001			
-2047	0.019 ± 0.001			
-681.5	1.88 ± 0.09			
280	4.74 ± 0.04			
665	6.36 ± 0.07			
865	6.70 ± 0.06			
1065	8.16 ± 0.33			

	"Normal" operation, 1% of the power loss in 14 Hz				
	Normal scenario,		Uniform,1W/m	Accidents scale to	Accidents
	Sim1_0		Sim0_0	1% 1W/m	Accidents
Z	Assuming	Using values			
position	1W/m	from [4]	c/ms (1kHz)	c/ms (1kHz)	c in 1^{st} μs ($1MHz$
(cm)	c/s (1Hz)	c/s (1Hz)			
-2649					
-2455	3.39 ± 0.10	1.02 ± 0.03	0.004 ± 0.001	0.21 ± 0.01	16.70 ± 4.09
-2261	22.95 ± 0.46	6.89 ± 0.14	0.016 ± 0.001	0.92 ± 0.01	59.81 ± 7.73
-2067				0.396 ± 0.003	13.82 ± 3.72
-2047	319.07 ± 2.80	319.07 ± 2.80	0.019 ± 0.001		
-681.5	23.01 ± 0.46	18.41 ± 0.37	1.88 ± 0.09		
280	0.56 ± 0.01	0.40 ± 0.01	4.74 ± 0.04		
665	1.20 ± 0.03	0.84 ± 0.02	6.36 ± 0.07	14.92 ± 0.50	4518.26 ± 67.22
865	0.92 ± 0.02	0.65 ± 0.02	6.70 ± 0.06	67.73 ± 0.78	51790.90 ± 227.5
1065	2.24 ± 0.06	0.22 ± 0.01	8.16 ± 0.33	13.87 ± 0.35	4914.98 ± 70.11

NORMAL SLOW

	1% of the power loss		
	distributed in 14 Hz		
	c/s (1 Hz)		
Z position	10/ 1\\//m	1% of values	
(cm)	1% 1W/m	from [4]	
-2649			
-2455	3.39 ± 0.10	1.02 ± 0.03	
-2261	22.95 ± 0.46	6.89 ± 0.14	
-2047	319.07 ± 2.80	319.07 ± 2.80	
-681.5	23.01 ± 0.46	18.41 ± 0.37	
280	0.56 ± 0.01	0.40 ± 0.01	
665	1.20 ± 0.03	0.84 ± 0.02	
865	0.92 ± 0.02	0.65 ± 0.02	
1065	2.24 ± 0.06	0.22 ± 0.01	

Different deposited energy threshold – slow detector

Energy vs z-position for the neutrons produced in the losses in the uniform loss scenario simulated from ESS ($sim0_0$) at the left and for the normal operation scenario ($sim1_0$) at the right.