MonteCarlo results: nBLM response to ESS scenarios Laura Segui IRFU-CEA/Saclay nBLM PDR1.2 review meeting 10/07/2017 #### OUTLOOK - Simulations strategy - Accidental vs 0.01 W/m scenarios - Slow module - Fast module - Detector position studies - Conclusions #### Discussed in PDR1.1 - Simulations performed by the BI-ESS group and summarized in report CHESS, ESS-0066428, 2016: I. Dolenc Kittelman, "Report regarding the MC simulation for BLM-focus on the nBLM" [1] - Simulate loss scenarios, save secondary produced particles that enter in a nBLM phantom volume placed along the DTL. - The output (*mcpl* format) → the input in the nBLM simulations - In the mcpl file there are for each produced particle: - Particle energy - Momentum - Position - Time - Plus a pdgCode to identify the particle - Time from ESS simulation has been added to the G4-nBLM simulation GlobalTime - Time from the ESS simulation == time since proton lost to particle creation - G4-nBLM *GlobalTime* == time since particle creation in the geant4 simulation to interaction in the gas in the nBLM chamber. - → Therefore, we are taking into account the total time since lost starts until detection in the nBLM detectors. In [1] it is specified that the lost has been considered instantaneous and therefore, the time of the development of the lost is not included. DE LA RECORRICOR À L'INDUSTRIE - 13 localized loss scenarios simulated in [1] - All in DTL-1 and DTL-5 - Known number of protons, fix energy, lost in a point - Used 7/13 as the nBLM-G4 input - Different parameters some of them - Pencil beam vs Gaussian ($\sigma_{xy} = 0$ or 1) - Opposite direction than the nBLM phantom volume | ESS
file | Loss
location | Proton
Energy
(MeV) | Protons simulated | Bunches
simulated | Neutrons
produced
in scenario | N's/
bunch | Comments | |-------------|------------------|---------------------------|-------------------|----------------------|-------------------------------------|---------------|---| | sim2-0 | Mid DTL-1 | 11.5 | 6.00E+08 | 5.45E-01 | 2.90E+05 | 5.31E+05 | Max θ in DTL1,
50mrad, σ_{xy} = 1mm | | sim2-1 | ¾ DTL-1 | 17.9 | 1.00E+08 | 9.09E-02 | 2.33E+05 | 2.56E+06 | Max θ in DTL1,
50mrad, $\sigma_{xy} = 1$ mm | | sim2-3 | Mid DTL-1 | 11.5 | 6.00E+08 | 5.45E-01 | 2.86E+05 | 5.24E+05 | Same as sim2-0 but $\varphi = -90^{\circ}$, $\sigma_{xy} = 1$ mm | | sim2-8 | Start DTL-5 | 71.8 | 4.00E+07 | 3.64E-02 | 4.33E+06 | 1.19E+08 | Max θ in DTL5
10 mrad, $\sigma_{xy} = 0$ | | sim2-11 | End DTL-5 | 86.5 | 4.00E+07 | 3.64E-02 | 4.38E+06 | 1.20E+08 | Max θ in DTL5
10 mrad, σ_{xy} = 1mm | | sim2-12 | End DTL-5 | 86.5 | 4.00E+07 | 3.64E-02 | 3.94E+06 | 1.08E+08 | Same as sim2-11 but $\sigma_{xy} = 0$ | | sim2-13 | Mid DTL-5 | 79.3 | 4.00E+07 | 3.64E-02 | 3.94E+06 | 1.08E+08 | Max θ in DTL5
10 mrad, $\sigma_{xy} = 0$ | - nBLM geometry defined in Geant4 - Geometry simulated: "standard" one - Geometry optimization first PDR. Finish with tests - ESS scenarios output read as input - Used only the produced neutrons as input (so far) - Simulate > 10⁸ neutrons per run - nBLM placed at different locations around the DTLs - 4 on top of each DTL from where the lost is produced - Placed following recommendations in [1] - Use same reference system - Studied also position between tanks and on side - Simulated accidental losses: - Known number of protons at fix energy in a point - Used to scale to the case of 1% 1W/m in 14Hz | Parameter | "Standard" value | | | | | | |----------------------------|----------------------|--|--|--|--|--| | Slow module | | | | | | | | Cd thickness | 1.0 mm | | | | | | | Polyethylene | 4.0 | | | | | | | thickness | 4.0 cm | | | | | | | Aluminium | 1.0 | | | | | | | chamber thickness | 1.0 mm | | | | | | | B ₄ C thickness | 1.5 μm | | | | | | | Drift Distance | 5.0 mm | | | | | | | Micromegas surface | 10x10cm ² | | | | | | | Fast module | | | | | | |--------------------|----------------------|--|--|--|--| | Polypropylene | 2.0 mm | | | | | | thickness | | | | | | | Aluminium | 50.0 nm | | | | | | internal layer | 30.0 1 | | | | | | Aluminium | 1.0 mm | | | | | | chamber thickness | | | | | | | Drift Distance | 5.0 mm | | | | | | Micromegas surface | 10x10cm ² | | | | | - nBLM geometry defined in Geant4 - Geometry simulated: "standard" one - Geometry optimization first PDR. Finish with tests - ESS scenarios output read as input - Used only the produced neutrons as input (so far) - Simulate > 10⁸ neutrons per run - nBLM placed at different locations around the DTLs - 4 on top of each DTL from where the lost is produced - Placed following recommendations in [1] - Use same reference system - Studied also position between tanks and on side - Simulated accidental losses: - Known number of protons at fix energy in a point #### **nBLM RESPONSE TO ESS SCENARIOS** #### **Analysis** - Every neutron that deposit energy in the nBLM gas volume is recorded and saved - Only events that deposit >10 keV are considered - The electronics and electric field are not simulated - Small drift volume → any particle detected - To study response under ESS scenarios calculate: - Expected rates - Time response. - Largely studied in [2] - For the rates: - Frequency in DTL shorter than the time response of the slow detector (100% events in ~180 μs) - Bunches will start overlapping in case of accidents - Calculate how many counts lost in 1st μs - For 0.01 W/m loss considered peak count rate (equal loss in each pulse) #### Accidents, Slow Module, on top #### Accidents, Slow Module, on top #### Accidents, Slow Module, on top #### Lowest and highest estimated high rate - Compare scenarios mid DTL-1 (yellow) and midDTL1 -90 (purple) (sim2_0 and sim2_3) - Results obtained are the same within $\sim 2\sigma$ maximum in both cases. - Also comparing them if placing the detector on the side (next slides). #### Pencil-beam vs Gaussian (1mm) - Compare End DTL-5 magenta and blue - Very similar result on loss, smaller further from loss for pencil beam #### Accidents in DTL-1 #### Accidents in DTL-5 | ESS input | nBLM | c/bunch | Accidents c in the first µs (MHz) | |------------------|------|------------------|-----------------------------------| | | det1 | | | | Sim2-0 | det2 | 1.70 ± 0.04 | 16.70 ± 4.09 | | Mid DTL-1 | det3 | 7.45 ± 0.04 | 59.81 ± 7.73 | | | det4 | 3.21 ± 0.03 | 13.82 ± 3.72 | | | det1 | | | | Sim2-1 | det2 | 1.24 ± 0.05 | 7.20 ± 2.68 | | @ 3/4 DTL-1 | det3 | 4.14 ± 0.10 | 28.60 ± 5.35 | | | det4 | 11.57 ± 0.16 | 80.76 ± 8.99 | | | det1 | | | | Sim2-3 | det2 | 1.58 ± 0.03 | 8.21 ± 2.87 | | Mid DTL-1 (-90°) | det3 | 6.02 ± 0.05 | 54.28 ± 7.37 | | | det4 | 2.95 ± 0.04 | 16.64 ± 4.08 | | ESS input | nBLM | c/bunch | Accidents c in
the first µs
(GHz) | |--------------------------|------|---------------------|---| | | det1 | 2793.69 ± 17.38 | 26.83 ± 0.16 | | Sim2-8 | det2 | 815.91 ± 9.40 | 0.59 ± 0.08 | | Start DTL5 | det3 | 409.36 ± 6.65 | 0.20 ± 0.04 | | | det4 | 258.34 ± 5.29 | 0.06 ± 0.002 | | | det1 | 314.18 ± 5.85 | 0.14 ± 0.04 | | Sim2-11
End DTL- | det2 | 336.00 ± 6.05 | 0.14 ± 0.04 | | 5 | det3 | 599.35 ± 8.09 | 0.26 ± 0.05 | | | det4 | 1174.69 ± 11.32 | 0.75 ± 0.09 | | Sim2-13
Mid DTL-
5 | det1 | 530.48 ± 7.22 | 0.25 ± 0.05 | | | det2 | 827.69 ± 27.76 | 0.45 ± 0.07 | | | det3 | 3758.40 ± 42.95 | 51.79 ± 0.23 | | | det4 | 769.65 ± 19.44 | 0.49 ± 0.07 | #### nBLM RESPONSE TO ESS SCENARIOS – 1% 1W/m SLOW #### Scale down accidents to 1% 1W/m in 14Hz, **Slow** detector, on top Solid lines: 1% 1W/m lost Dashed lines: accidents Accidents 10 MHz – 60GHz 1% 1W/m 0.1 kHz – 700 kHz #### nBLM RESPONSE TO ESS SCENARIOS – 1% 1W/m SLOW #### Accidents in DTL-1 - Rates for $1\%1W/m \sim 0.1-1 \text{ kHz}$ - Factor ~10⁴ between accidents and 1% 1W/m #### Accidents in DTL-5 - Rates for 1%1W/m~ 5 68 kHz - Factor ~10⁵ between accidents and 1% 1W/m | ESS input | nBLM | 1% 1W/m c/ms (kHz) | Accidents c in the first µs (MHz) | ESS input | nBLM | 1% 1W/m
c/ms (kHz) | Accidents c in the first µs (GHz) | |-------------------------------|------|--------------------|-----------------------------------|----------------------|------|-----------------------|-----------------------------------| | | det1 | | | | det1 | 55.25 ± 0.34 | 26.83 ± 0.16 | | Sim2-0 | det2 | 0.21 ± 0.01 | 16.70 ± 4.09 | Sim2-8 | det2 | 16.14 ± 0.19 | 0.59 ± 0.08 | | Mid DTL-1 | det3 | 0.92 ± 0.01 | 59.81 ± 7.73 | Start DTL5 | det3 | 8.10 ± 0.13 | 0.20 ± 0.04 | | | det4 | 0.396 ± 0.003 | 13.82 ± 3.72 | | det4 | 5.11 ± 0.10 | 0.06 ± 0.002 | | | det1 | | | Sim2-11
End DTL-5 | det1 | 5.17 ± 0.10 | 0.14 ± 0.04 | | Sim2-1 | det2 | 0.098 ± 0.004 | 7.20 ± 2.68 | | det2 | 5.53 ± 0.10 | 0.14 ± 0.04 | | @ 3/4 DTL-1 | det3 | 0.33 ± 0.01 | 28.60 ± 5.35 | | det3 | 9.87 ± 0.13 | 0.26 ± 0.05 | | | det4 | 0.62 ± 0.01 | 80.76 ± 8.99 | | det4 | 19.34 ± 0.18 | 0.75 ± 0.09 | | | det1 | | | | det1 | 9.56 ± 0.13 | 0.25 ± 0.05 | | Sim2-3
Mid DTL-1
(-90°) | det2 | 0.195 ± 0.003 | 8.21 ± 2.87 | Sim2-13 | det2 | 14.92 ± 0.50 | 0.45 ± 0.07 | | | det3 | 0.74 ± 0.01 | 54.28 ± 7.37 | Mid DTL-5 | det3 | 67.72 ± 0.77 | 51.79 ± 0.23 | | | det4 | 0.364 ± 0.004 | 16.64 ± 4.08 | | det4 | 13.87 ± 0.35 | 0.49 ± 0.07 | #### nBLM RESPONSE TO ESS SCENARIOS – FAST Same studies for the **FAST** detector, placed also on top Accidents and scale down them to 1% 1W/m in 14Hz, Lower stats in some of the cases studied #### nBLM RESPONSE TO ESS SCENARIOS – FAST - Rates for 1%1W/m ~10 MHz (DTL-1) ~100 MHz – 28 GHz (DTL-5) Factor ~10⁴ between accidents an d 1% 1W/m | ESS input | nBLM
detector | c/bunch | Accidents c/µs (MHz) | 1% 1W/m
c/ms (kHz) | | |------------------------|-----------------------|-------------------|------------------------|-----------------------|--| | sim2-0-DTL
Mid DTL1 | det3 0.060 ± 0.00 | | 22.44 ± 2.54 | 0.008 ± 0.001 | | | sim2-1-DTL | det3 | 0.030 ± 0.005 | 10.65 ± 2.09 | 0.0024 ± 0.0005 | | | 3/4 DTL1 | | 0.000 | | | | | sim2-8-DTL | det1 | 52.70 ± 1.69 | 18569.94 ± 594.71 | 1.04 ± 0.03 | | | Start DTL5 | det2 | 1.41 ± 0.28 | 495.20 ± 97.12 | 0.028 ± 0.006 | | | sim2-11- | det3 | 0.93 ± 0.16 | 326.50 ± 56.00 | 0.015 ± 0.003 | | | DTL End DTL5 | det4 | 5.51 ± 0.39 | 1939.82 ± 136.49 | 0.091 ± 0.006 | | | sim2-12- | det3 | 0.88 ± 0.21 | 311.14 ± 73.34 | 0.015 ± 0.003 | | | DTL End DTL5 | det4 | 3.83 ± 4.34 | 1348.27 ± 152.66 | 0.063 ± 0.007 | | | sim2-13- | det3 | 82.28 ± 2.01 | 285970.55 ± 707.65 | 1.48 ± 0.04 | | | DTL
Mid DTL5 | det4 | 0.38 ± 0.13 | 132.85 ± 46.97 | 0.007 ± 0.002 | | Accidents in the fast detector Up to 80c/bunch →80c in ~ 3ns 1%1W/m in the fast detector Up to 1c/ms → ~3c/pulse Over 300 pulses, already 300 counts #### nBLM RESPONSE TO ESS SCENARIOS – CONCLUSIONS #### In summary In the DTLs | | | Rates | |------|--------------|-----------------------| | | 1% 1W/m | Accidents (after 1µs) | | Slow | 0.1 – 68 kHz | 10MHz – 60 GHz | | Fast | 1 – 400 Hz | 2-700 MHz | Important to know expected neutron background - The expected rates for a localized loss or for a scenario of 1% 1W/m emission are very different. - Recognize an increment in the emitted neutrons in case of a problem within 1μs - With the fast module in much shorter time (few ns). - We need to include the time for the electronics and signal processing. #### BUT - The huge rates expected based on the Montecarlo simulations, for some cases, are too high for individual event counting, as we are talking about GHz. - Several options to reduce these rates, which can be done during the commissioning phase, are: - \triangleright Reducing the B4C thickness (range 150 nm 2 μ m) \rightarrow factor more than 10 reduction - Using natural Boron instead of ¹⁰B → factor 5 reduction Read from just 1 to the 4 strips → factor 4 - Or include current mode in the software and firmware - The effect on the sensitivity of the system will be estimated only after performing the planned tests or even during the commissioning phase. #### **DETECTOR POSITION** - Results shown so far were obtained with the detector on top of the accelerator - Further studies carried out with the detector - on the lateral (65 cm from accelerator walss) and - in-between the tanks (centred with the beam) - Only fast module #### **LATERAL** Two scenarios used: sim2_0 (mid DTL1) and sim2_13(mid DTL5) #### **DETECTOR POSITION** #### In-between - > Four lost scenarios used - sim2_0 (middle of DTL-1) - sim2-1 (at ¾ of DTL-1) - sim2-11 and sim2-12 (at ¾ of DTL-5) - Low statistics - ➤ Higher response closer to loss (1-90 MHz at low E, 0.8-5 GHz at high energy) - \rightarrow During 1% 1W/m \rightarrow 0.5 11 Hz and 20-300 Hz (DTL1 and DTL5) | ESS input | nBLM
detector
between | Bunches
simulated | Counts
detected | c/bunch | c/μs
(MHz) | |-------------------------|-----------------------------|----------------------|--------------------|-------------------|----------------------| | sim2-0-DTL | DTLs 1-2 | 4315.59 | 16 ± 4 | 0.004 ± 0.001 | 1.36 ± 0.34 | | (mid DTL-1) | DTLs 2-3 | 4315.59 | 2 ± 1 | Low stats | Low stats | | sim2-1-DTL | DTLs 1-2 | 429.69 | 119 ± 11 | 0.28 ± 0.03 | 97.52 ± 8.94 | | (¾ DTL-1) | DTLs 2-3 | 429.69 | 2 ± 1 | Low stats | Low stats | | sim2-11-DTL (end DTL-5) | End of 5 | 9.17 | 22 ± 5 | 2.40 ± 0.51 | 845.07 ± 180.17 | | sim2-12-DTL | DTLs 4-5 | 10.19 | 2 ± 1 | Low stats | Low stats | | (end DTL-5) | End of 5 | 25.46 | 381 ± 20 | 14.96 ± 0.77 | 5268.63 ± 269.92 | #### **DETECTOR POSITION -- REMARKS** - Good coverage of accelerator can help identifying position of loss - Detector on top or accelerator or on side gives more or less same signal, redundancy? - ❖ In-between detectors can also give information both in the case of 0.01 W/m loss or a higher accident loss. - * Repartition as suggested in [1] is - 5 nBLM modules in the MEBT section - 11 in the DTLs sections → Agreed to increase it - 14 in the spokes sections - 4 in the High β section - Total 34 over 42 that needs to be deliver. - Only response in DTLs section studied by simulations - Coverage per region important to follow with rest of the design: - ❖ ADC cards and IOC CPU per rack and cables through stubs #### Threshold between "thermal" and fast neutrons - In [1] it is suggested two possible thresholds to separate between "thermal" and fast neutrons. - 0.5 MeV or - 50 keV. - This is naturally obtained in the fast detector - only sensitive to initial neutrons energies of ~ 0.2 MeV. - In the case of the slow we have some merging playing with the Mirrobor thickness, however, the limits suggested in [2] seems quiet unrealistic as will imply a high efficiency loss. SLOW Detector but with a initial flux constante in all E ### THANK YOU #### **References** - [1] I. Dolenc Kittelman, "Report regarding the MC simulation for BLM-focus on the nBLM," CHESS, ESS-0066428, 2016. - [2] nBLM PDR12, ## **BACK-UP** #### USING THE ACCIDENTS TO SCALE TO 1W/m #### Method - 1. Calculate the power lost in the scenario: $W = Ep \times I = Ep \times Np$ - Assume Np per second - 2. Used it to normalize the events detected in the scenario to the case of 1W/m - 3. Normalize also by the number of neutrons we simulate, N_N , and the number of neutrons produced in the scenario, N_N^{Simu} - 4. Normalize by the time, for example, assume lost is produced per pulse (2.86ms) - We divide by it and pass it to μs that is the time of reaction needed $$c_{det} * \frac{N_N}{N_N^{Simu}} * \frac{1W/m}{xW/m} * \frac{1}{Active Time}$$ | ESC Input | Position of | Ep | Ep | Np | N _N | W/m/s | |-------------|-------------|-------|--------------------------|--------------------|--------------------|-------------------------| | ESS Input | the loss | (MeV) | (J) | ТМР | INN | VV / 111/ S | | sim2-0-DTL | Mid DTL-1 | 11.5 | 1.84 x 10 ⁻¹² | 6.00×10^8 | 2.90×10^5 | 1.10×10^{-3} | | sim2-1-DTL | 3/4 DTL-1 | 17.9 | 2.86 x 10 ⁻¹² | 1.00×10^8 | 6.68×10^4 | 2.86 x 10 ⁻⁴ | | sim2-3-DTL | Mid DTL-1 | 11.5 | 1.84 x 10 ⁻¹² | 6.00×10^8 | 2.86×10^5 | 1.10×10^3 | | sim2-8-DTL | Start DTL-5 | 71.8 | 1.15 x 10 ⁻¹¹ | 4.00×10^7 | 4.33×10^6 | 4.60×10^4 | | sim2-11-DTL | End DTL-5 | 86.5 | 1.38 x 10 ⁻¹¹ | 4.00×10^7 | 4.38×10^6 | 5.54×10^4 | | sim2-12-DTL | End DTL-5 | 86.5 | 1.38×10^{-11} | 4.00×10^7 | 3.94×10^6 | 5.54×10^4 | | sim2-13-DTL | Mid DTL-1 | 79.0 | 1.26 x 10 ⁻¹¹ | 4.00×10^7 | 3.94×10^6 | 5.06×10^4 | #### nBLM RESPONSE TO ESS SCENARIOS – 1% 1W/m SLOW #### Scale down accidents to 1% 1W/m in 14Hz, **Slow** detector, on top #### Accidents in DTL-1 - Rates for $1\%1W/m \sim 0.1-1 \text{ kHz}$ - Factor ~10⁴ between accidents and 1% 1W/m | ESS input | nBLM | c after
normalization | 1% 1W/m c/ms (kHz) | Accidents c in the first µs (MHz) | |--------------------|------|--------------------------|--------------------|-----------------------------------| | | det1 | | | | | Sim2-0 | det2 | 842 ± 20 | 0.21 ± 0.01 | 16.70 ± 4.09 | | Mid DTL- | det3 | 3685 ± 21 | 0.92 ± 0.01 | 59.81 ± 7.73 | | | det4 | 1586 ± 13 | 0.396 ± 0.003 | 13.82 ± 3.72 | | | det1 | | | | | Sim2-1 | det2 | 393 ± 17 | 0.098 ± 0.004 | 7.20 ± 2.68 | | @ 3⁄4
DTL-1 | det3 | 1317 ± 31 | 0.33 ± 0.01 | 28.60 ± 5.35 | | | det4 | 3678 ± 52 | 0.62 ± 0.01 | 80.76 ± 8.99 | | Sim2 2 | det1 | | | | | Sim2-3
Mid DTL- | det2 | 779 ± 14 | 0.195 ± 0.003 | 8.21 ± 2.87 | | | det3 | 2978 ± 26 | 0.74 ± 0.01 | 54.28 ± 7.37 | | (-90°) | det4 | 1458 ± 19 | 0.364 ± 0.004 | 16.64 ± 4.08 | #### nBLM RESPONSE TO ESS SCENARIOS – 1% 1W/m SLOW #### Accidents in DTL-5 - Rates for 1%1W/m~ 5 68 kHz - Factor ~10⁵ between accidents and 1% 1W/m | ESS input | nBLM | c after
normalization | 1% 1W/m c/ms (kHz) | Accidents c in the first µs (GHz) | |-------------------------|------|--------------------------|--------------------|-----------------------------------| | | det1 | $(22.12 \pm 0.14)10^4$ | 55.25 ± 0.34 | 26.83 ± 0.16 | | Sim2-8 | det2 | $(6.46 \pm 0.07)10^4$ | 16.14 ± 0.19 | 0.59 ± 0.08 | | Start DTL5 | det3 | $(3.24 \pm 0.05)10^4$ | 8.10 ± 0.13 | 0.20 ± 0.04 | | | det4 | $(2.05 \pm 0.04)10^4$ | 5.11 ± 0.10 | 0.06 ± 0.002 | | | det1 | $(2.07 \pm 0.04)10^4$ | 5.17 ± 0.10 | 0.14 ± 0.04 | | Sim2-11 | det2 | $(2.22 \pm 0.04)10^4$ | 5.53 ± 0.10 | 0.14 ± 0.04 | | End DTL-5 | det3 | $(3.95 \pm 0.05)10^4$ | 9.87 ± 0.13 | 0.26 ± 0.05 | | | det4 | $(7.74 \pm 0.07)10^4$ | 19.34 ± 0.18 | 0.75 ± 0.09 | | | det1 | $(3.83 \pm 0.05)10^4$ | 9.56 ± 0.13 | 0.25 ± 0.05 | | Sim2-13
Mid
DTL-5 | det2 | $(5.98 \pm 0.20)10^4$ | 14.92 ± 0.50 | 0.45 ± 0.07 | | | det3 | $(27.12 \pm 0.31)10^4$ | 67.72 ± 0.77 | 51.79 ± 0.23 | | | det4 | $(5.56 \pm 0.14)10^4$ | 13.87 ± 0.35 | 0.49 ± 0.07 | #### nBLM RESPONSE TO ESS SCENARIOS – FAST - Rates for 1%1W/m ~10 MHz (DTL-1) ~100 MHz 28 GHz (DTL-5) - Factor ~10⁴ between accidents an d 1% 1W/m | ESS input | nBLM
detector | c/bunch | Accidents c/μs (MHz) | c after normalization | 1% 1W/m
c/ms (kHz) | |------------------------|------------------|-------------------|------------------------|-----------------------|-----------------------| | sim2-0-DTL
Mid DTL1 | det3 | 0.060 ± 0.007 | 22.44 ± 2.54 | 32 ± 4 | 0.008 ± 0.001 | | sim2-1-DTL
3/4 DTL1 | det3 | 0.030 ± 0.005 | 10.65 ± 2.09 | 10 ± 2 | 0.0024 ± 0.0005 | | sim2-8-DTL | det1 | 52.70 ± 1.69 | 18569.94 ± 594.71 | 4180 ± 134 | 1.04 ± 0.03 | | Start DTL5 | det2 | 1.41 ± 0.28 | 495.20 ± 97.12 | 111 ± 22 | 0.028 ± 0.006 | | sim2-11-DTL | det3 | 0.93 ± 0.16 | 326.50 ± 56.00 | 61 ± 11 | 0.015 ± 0.003 | | End DTL5 | det4 | 5.51 ± 0.39 | 1939.82 ± 136.49 | 363 ± 26 | 0.091 ± 0.006 | | sim2-12-DTL | det3 | 0.88 ± 0.21 | 311.14 ± 73.34 | 58 ± 14 | 0.015 ± 0.003 | | End DTL5 | det4 | 3.83 ± 4.34 | 1348.27 ± 152.66 | 252 ± 29 | 0.063 ± 0.007 | | sim2-13-DTL | det3 | 82.28 ± 2.01 | 285970.55 ± 707.65 | 5940 ± 145 | 1.48 ± 0.04 | | Mid DTL5 | det4 | 0.38 ± 0.13 | 132.85 ± 46.97 | 27 ± 10 | 0.007 ± 0.002 | #### **DETECTOR POSITION** #### In-between - Four lost scenarios used - sim2_0 (middle of DTL-1) - sim2-1 (at ¾ of DTL-1) - sim2-11 and sim2-12 (at ¾ of DTL-5) - Low statistics - ➤ Higher response closer to loss (1-90 MHz at low E, 0.8-5 GHz at high energy) | ESS input | nBLM
detector
between | Bunches
simulated | Counts
detected | c/bunch | c/µs
(MHz) | 1% 1W/m
c/μs | |-------------------------|-----------------------------|----------------------|--------------------|-------------------|----------------------|-----------------| | sim2-0-DTL | DTLs 1-2 | 4315.59 | 16 ± 4 | 0.004 ± 0.001 | 1.36 ± 0.34 | 4.78E-07 | | (mid DTL-1) | DTLs 2-3 | 4315.59 | 2 ± 1 | Low stats | Low stats | | | sim2-1-DTL | DTLs 1-2 | 429.69 | 119 ± 11 | 0.28 ± 0.03 | 97.52 ± 8.94 | 1.10E-05 | | (¾ DTL-1) | DTLs 2-3 | 429.69 | 2 ± 1 | Low stats | Low stats | | | sim2-11-DTL (end DTL-5) | End of 5 | 9.17 | 22 ± 5 | 2.40 ± 0.51 | 845.07 ± 180.17 | 1.98E-05 | | sim2-12-DTL | DTLs 4-5 | 10.19 | 2 ± 1 | Low stats | Low stats | | | (end DTL-5) | End of 5 | 25.46 | 381 ± 20 | 14.96 ± 0.77 | 5268.63 ± 269.92 | 3.08E-04 | - Two approaches to normalize the number of detected events, $\emph{c}_{\textit{det}, \text{ in the nBLM modules}}.$ - Main Q's: How many protons of each energy have been produced? #### Method - 1. Assume the protons simulated in the ESS scenario were distributed evenly along the 40 m $\rightarrow N_p^{Simu}/m$ - 2. We can obtain the proton energy along the accelerator distance [3]. - Its ~ linear along the DTLs - 3. Calculate how many protons of the energy in the region are needed to: - 1. To have $1W/m \rightarrow N_p$ - 2. Or the other approach is to use [4] with a powerloss per meter calculation. From the expected loss we calculate $\rightarrow N_P$ - 4. Obtain the number of neutrons/m produced for the positions we located the nBLM $\rightarrow N_N^{Simu}/m$ - 5. Normalize by the number of neutrons we simulated $\rightarrow N_N$ - 6. We are assuming that the only protons that contribute to the lost produced in a given region are the ones in this region. $$c_{det} * \frac{N_P}{N_P^{Simu}} * \frac{N_N}{N_N^{Simu}/m} * \frac{1}{Active Time}$$ Similarly to the normal case, we have to know the normalization factor #### Method - 1. Calculate N_p needed to produce a loss of 1W/m taking into account the energy of the proton at each position. - 2. 10^8 protons were simulated- -> assume again that they have been distributed uniformly along the DTLS --> N_p^{simu} as before, $N_p^{simu} = 10^8/40$ - 3. Obtain the number of neutrons produced/meter $\rightarrow N_N^{\text{Simu}}/m$ - 4. Normalize by the number of neutrons simulated $\rightarrow N_N$ - 5. Also in this case we are assuming that the only protons that contribute to the lost produced in a given region are the ones in this region. $$c_{det} \cdot \frac{N_N}{N_N^{Simu}} \cdot \frac{1W/m}{x W/m} \cdot \frac{1}{\text{Active Time}}$$ #### UNIFORM SLOW | 1% 1W/m in 14 Hz | | | | | |------------------|---------------|--|--|--| | Z position | c/ms (kHz) | | | | | (cm) | | | | | | -2649 | | | | | | -2455 | 0.004 ± 0.001 | | | | | -2261 | 0.016 ± 0.001 | | | | | -2047 | 0.019 ± 0.001 | | | | | -681.5 | 1.88 ± 0.09 | | | | | 280 | 4.74 ± 0.04 | | | | | 665 | 6.36 ± 0.07 | | | | | 865 | 6.70 ± 0.06 | | | | | 1065 | 8.16 ± 0.33 | | | | | | | | | | | | "Normal" operation, 1% of the power loss in 14 Hz | | | | | |----------|---|-------------------|-------------------|--------------------|----------------------------------| | | Normal scenario, | | Uniform,1W/m | Accidents scale to | Accidents | | | Sim1_0 | | Sim0_0 | 1% 1W/m | Accidents | | Z | Assuming | Using values | | | | | position | 1W/m | from [4] | c/ms (1kHz) | c/ms (1kHz) | c in 1^{st} μs ($1MHz$ | | (cm) | c/s (1Hz) | c/s (1Hz) | | | | | -2649 | | | | | | | -2455 | 3.39 ± 0.10 | 1.02 ± 0.03 | 0.004 ± 0.001 | 0.21 ± 0.01 | 16.70 ± 4.09 | | -2261 | 22.95 ± 0.46 | 6.89 ± 0.14 | 0.016 ± 0.001 | 0.92 ± 0.01 | 59.81 ± 7.73 | | -2067 | | | | 0.396 ± 0.003 | 13.82 ± 3.72 | | -2047 | 319.07 ± 2.80 | 319.07 ± 2.80 | 0.019 ± 0.001 | | | | -681.5 | 23.01 ± 0.46 | 18.41 ± 0.37 | 1.88 ± 0.09 | | | | 280 | 0.56 ± 0.01 | 0.40 ± 0.01 | 4.74 ± 0.04 | | | | 665 | 1.20 ± 0.03 | 0.84 ± 0.02 | 6.36 ± 0.07 | 14.92 ± 0.50 | 4518.26 ± 67.22 | | 865 | 0.92 ± 0.02 | 0.65 ± 0.02 | 6.70 ± 0.06 | 67.73 ± 0.78 | 51790.90 ± 227.5 | | 1065 | 2.24 ± 0.06 | 0.22 ± 0.01 | 8.16 ± 0.33 | 13.87 ± 0.35 | 4914.98 ± 70.11 | #### NORMAL SLOW | | 1% of the power loss | | | |------------|----------------------|-----------------|--| | | distributed in 14 Hz | | | | | c/s (1 Hz) | | | | Z position | 10/ 1\\//m | 1% of values | | | (cm) | 1% 1W/m | from [4] | | | -2649 | | | | | -2455 | 3.39 ± 0.10 | 1.02 ± 0.03 | | | -2261 | 22.95 ± 0.46 | 6.89 ± 0.14 | | | -2047 | 319.07 ± 2.80 | 319.07 ± 2.80 | | | -681.5 | 23.01 ± 0.46 | 18.41 ± 0.37 | | | 280 | 0.56 ± 0.01 | 0.40 ± 0.01 | | | 665 | 1.20 ± 0.03 | 0.84 ± 0.02 | | | 865 | 0.92 ± 0.02 | 0.65 ± 0.02 | | | 1065 | 2.24 ± 0.06 | 0.22 ± 0.01 | | #### Different deposited energy threshold – slow detector Energy vs z-position for the neutrons produced in the losses in the uniform loss scenario simulated from ESS ($sim0_0$) at the left and for the normal operation scenario ($sim1_0$) at the right.