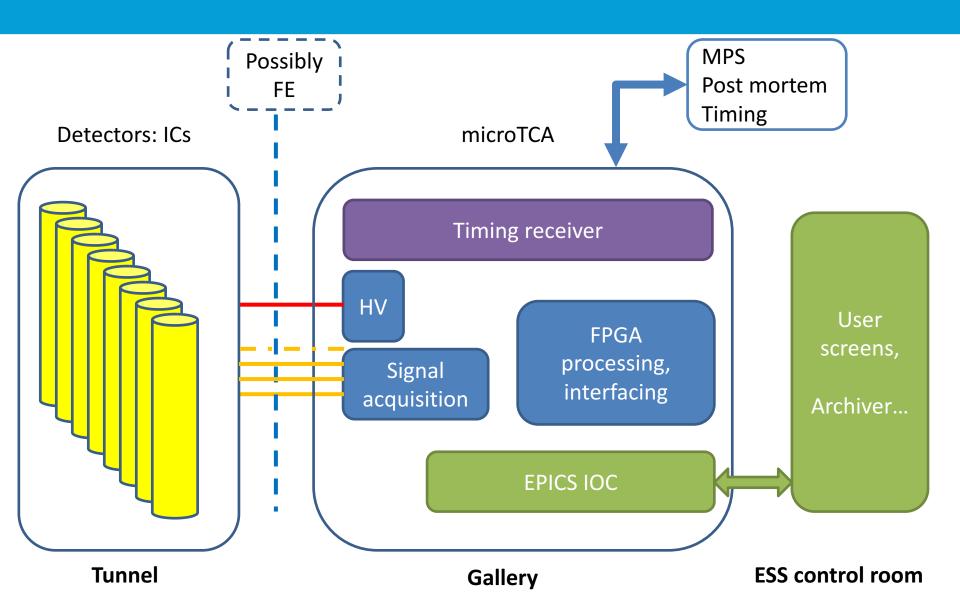


## icBLM electronics

Clement Derrez Test Engineer

www.europeanspallationsource.se 10 July, 2017

#### Outline




- Conceptual system design
- Detectors
- Electronics
  - High voltage unit
  - Signal acquisition unit
- Conclusion & Outlook



- BLM system: One of the most important diagnostic system of the ESS LINAC.
  - Keep the machine safe from beam-induced damage
  - Avoid excessive machine activation by providing critical input to the MPS
  - → no blind spots & precise loss locations determination
- System designed for maximum reliability
  - Redundancy
  - low latency
- Challenges:
  - Complicated noise situation. Additionally, noise sources vary depending on the location within the accelerator.
  - Cabling: This will be covered by Edvard in the next talk

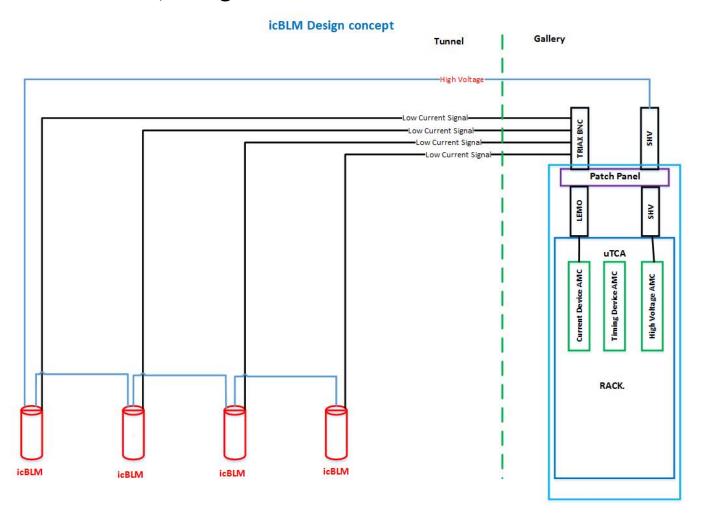






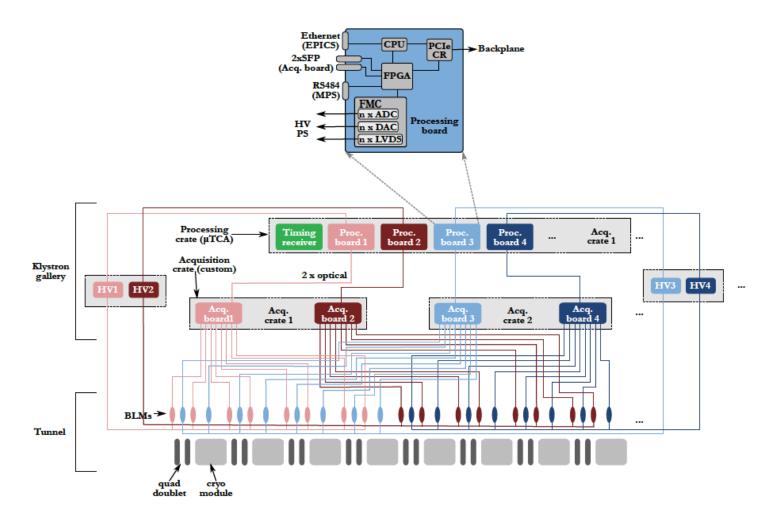


Units deployed in the support area fit in a 47U rack


- Specified by BI
- Provided by WP15.

| Unit description                 | Installation area | Comment                               | Entity                                                       |
|----------------------------------|-------------------|---------------------------------------|--------------------------------------------------------------|
| Current readout                  | Support           | FMC or custom acquisition crate       | CAENels FMC-PICO or custom acquisition crate (CERN Solution) |
| High voltage supply              | Support           | 1 is needed per mTCA chassis          | CAENels HV-PANDA.                                            |
| Timing Receiver                  | Support           | Event receiver for triggers and clock | The unit is provided by ICS.                                 |
| Power supply                     | Support           | Power supply for mTCA chassis         | The unit is provided by ICS.                                 |
| Central Processing Unit          | Support           | CPU for mTCA chassis, Intel i7        | The unit is provided by ICS.                                 |
| Chassis                          | Support           | The microTCA chassis                  | 3U microTCA crate. The unit is provided by ICS.              |
| MicroTCA Carrier Hub             | Support           | 1 is needed per mTCA chassis          | The unit is provided by ICS.                                 |
| Rack                             | Support           | Electronics rack                      | The unit is provided by WP15 and specified by BI.            |
| Rack patch panel                 | Support           | Installed on top of the rack          | The patch panel will be designed by WUT                      |
| Sensor                           | Tunnel            | Ionization chamber                    |                                                              |
| Beam Line Element Patch<br>Panel | Tunnel            |                                       |                                                              |

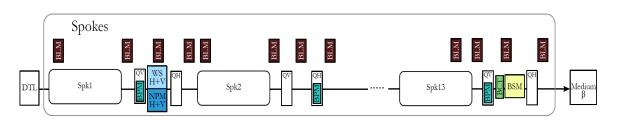





Baseline solution, being evaluated:






• Alternative solution: custom acquisition crate



#### **Detectors**



- Details have been covered in the icBLM detectors talk:
  - LHC-type
  - Design criteria: signal speed & robustness against ageing
  - Operated at 1.5 kV
  - Low pass filter at HV input
  - 285 ionization chambers received at ESS in Jul. 2017







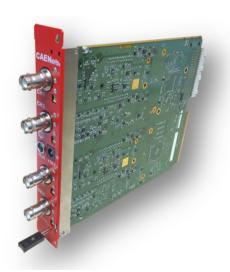


| Туре                                           | Description                                                                                                                                                                                         |
|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| XXX beam loss measurement                      | The beam loss shall be measured in the XXX section.                                                                                                                                                 |
| XXX beam loss measurement                      | A beam current loss of 10 mW/m shall be detected.                                                                                                                                                   |
| XXX PBI peak current range                     | Proton beam instrumentation in the XXX section shall function over a peak beam current range of 3 mA to 65 mA.                                                                                      |
| XXX PBI pulse length range                     | Proton beam instrumentation in the XXX section shall function over a proton beam pulse length range of 5 $\mu s$ to 2.980 ms.                                                                       |
| XXX PBI pulse-by-pulse measurement update rate | Unless specifically stated, all instrumentation shall be able to perform the measurements and report the relevant PV data at a repetition rate of 14 Hz.                                            |
| XXX PBI damaging beam detection and mitigation | Beam conditions that are potentially damaging to machine components shall be detected by the instrumentation and reported fast enough so that the conditions can be mitigated before damage occurs. |



## EUROPEAN SPALLATION SOURCE

## Electronics: HV unit specifications


| High Voltage Supply: Modulation            | Self-testing the ion chamber channels by modulating HV bias voltage shall be possible                               | A pulse or a continuous modulation could be used. This produces a signal by coupling through the capacitance of the ion chamber. |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| High Voltage Supply: output voltage rating | Positive voltage of at least 3 kV                                                                                   | the use of "positive polarity" will minimize saturation effects under high dose rates                                            |
| High Voltage Supply: output power          | Maximum output power of at least 5 W                                                                                |                                                                                                                                  |
| High Voltage Supply: output voltage ripple | Output voltage ripple below 4 ppm pk-pk/FS                                                                          |                                                                                                                                  |
| High Voltage Supply: noise figure          | Noise figure shall be compatible with that of the signal acquisition board. This includes temperature induced noise |                                                                                                                                  |

#### Electronics: HV unit



#### COTS solution: CAENels HV-PANDA will be evaluated

- Double-width AMC with MTCA.4 Rear I/O
- 4 channels rated at 4kV at 7W
- Configurable ramp rate
- Nominal voltage accuracy better than 0.05% FS and a ppmlevel peak-to-peak output voltage ripple
- SHV type connectors

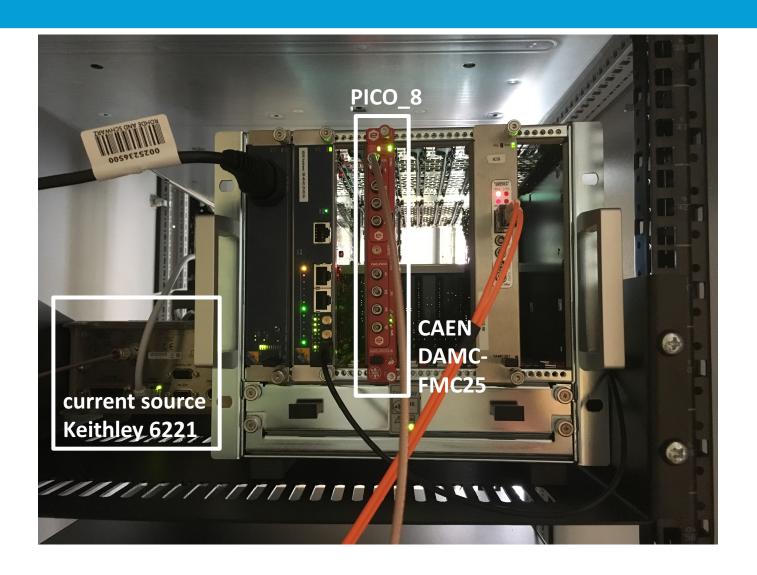


# Electronics: Signal acquisition unit specifications



| Signal acquisition: Dynamic range | Input current dynamic range: 10 nA to 10 mA.                                                                                                                                                  | Two separate ranges shall be used: the low end set by the condition that the operators must be able to tune on beam loss measurements down to 10 mW/m, while the high end shall allow recording of total beam loss during faults and machine studies                                                                                 | BLM is required to be able to measure at least 1% of 1W/m loss during normal operation and up to 1% of the total beam loss. |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Signal acquisition: Response time | NC LINAC: Calculated melting time values of 3-4 us  SC LINAC: 10 us  The signal acquisition card shall therefore feature a bandwidth of at least 300 KHz and a minimum sampling rate of 1MSPS | "Particle time" - PT: time between the onset of beam loss (the primary is lost) and the moment particle (primary or secondary) hits the detector.  Detection time: time needed for the detector signal to develop and to collect enough hits/current  Processing time: from the output of the detector to the BIS output on the FPGA |                                                                                                                             |
| Signal acquisition: resolution    | The signal acquisition card shall have a resolution of at least 20 bits                                                                                                                       |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                             |
| Signal acquisition: noise figure  | The signal acquisition card shall have a typical noise better than 10 nA in its lowest range, including temperature induced noise                                                             |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                             |

#### **Electronics: PICO-8 evaluation**




COTS solution: CAENels PICO-8

- 8-channel 20 bit Bipolar Floating Picoammeter with MTCA.4 REAR I/O
- "standard" AMC PICO-8 specs: http://www.caenels.com/products/amc-pico-8/
  - Full-scale ranges of 1mA and 1 uA
  - Input bandwidth: 10KHz
- ESS custom AMC PICO-8: (different input op-amp)
  - full-scale ranges of 10 mA and 500 uA
  - input bandwidth: 300 kHz





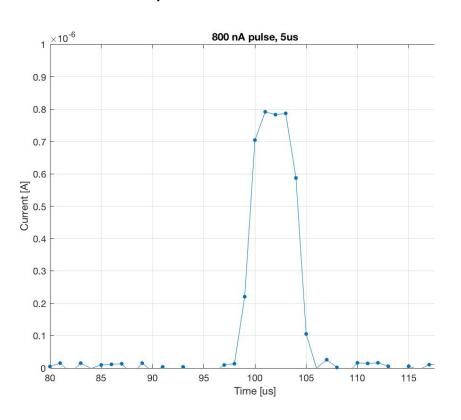


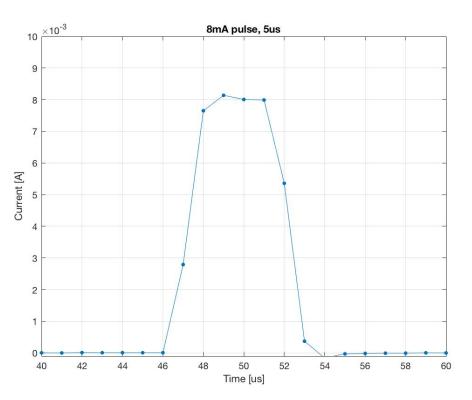


#### **Electronics: PICO-8 evaluation**

 Noise levels, as measured by manufacturer vs measured at ESS: (1 σ,10000 points @ 1MSPS)

|             | CAENels | ESS testbench |
|-------------|---------|---------------|
| 10 mA range | 190 nA  | 195 nA        |
| 500uA range | 10 nA   | 10 nA         |

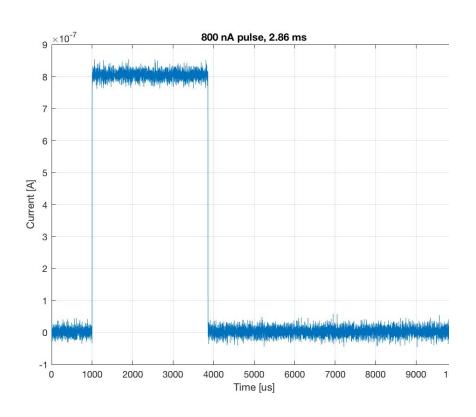

Bandwidth, as measured by manufacturer:

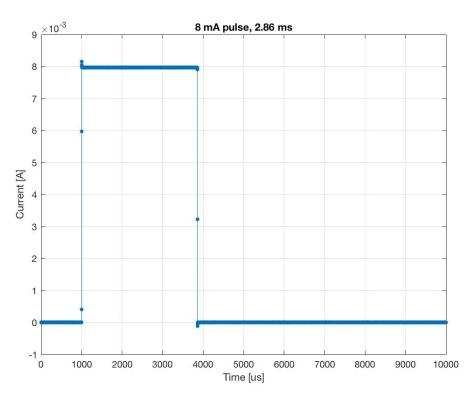

|      | CAENels, 10mA range | CAENels, 500uA range |
|------|---------------------|----------------------|
| Ch 0 | 301 kHz             | 300 kHz              |
| Ch 1 | 294 kHz             | 292 kHz              |
| Ch 2 | 299 kHz             | 299 kHz              |
| Ch 3 | 303 kHz             | 391 kHz              |





#### Shortest pulse:

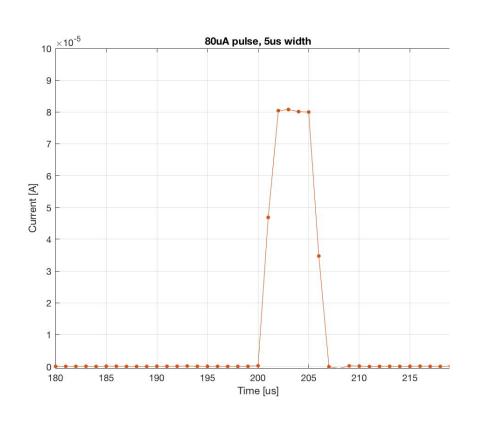


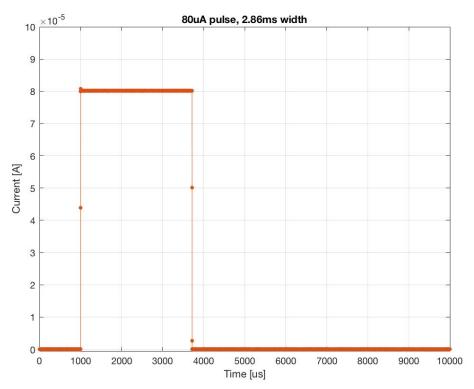








#### Longest pulse:

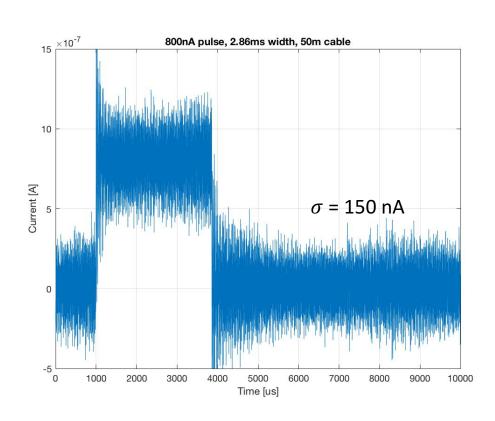


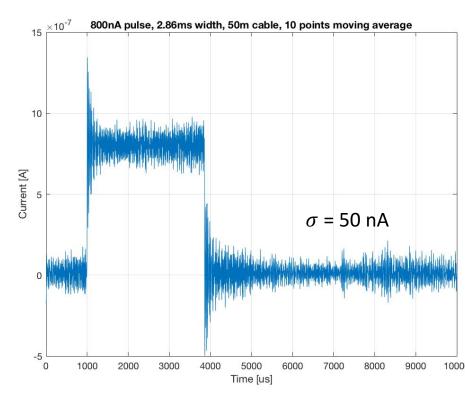








• 80 uA pulse amplitude: 1W/m loss during normal operation








• Worst case: long off the shelf coax cable, moving average:









#### Alternative solution: Custom acquisition crate

- CERN BLEDP + processing mezzanine
- Current to frequency converter, fully differential front end
- Measurement of the current input is performed by two different techniques:
  - Advanced Current to Frequency Converter (ACFC) used in the range 10pA to 30mA
  - Direct ADC acquisition (DADC) used in the range 20.3μA to 200mA
  - Transition between ranges managed by an FPGA
  - Optical output to post processing unit



#### **Conclusions & Outlook**



System design is moving forward quickly. 285 ICs received last week

#### • FRU tests:

- Perform a "long-term" measurement to check for possible drift, on HV and signal acquisition units
- Compare CERN solution evaluation with PICO-8

Software and Firmware