

Simulation Tools for Detector and Instrument Design

Kalliopi Kanaki

on behalf of the ESS Detector Group

European Spallation Source ERIC ICNS conference, Daejeon, July 2017

EUROPEAN SPALLATION SOURCE

Introduction

- Numerous advances in neutron detector technologies for upcoming ESS instruments
- New simulation tools are available to the community.
- Possible to tailor the detector design to the application
- Speed up the development period

B-MWPC/ Macrostructures (ESS/FRM2)

MultiGrid (ILL/ESS/LiU)

BandGEM (Milan/CNR/INFN/CERN/ESS)

Geant4: GEometry ANd Tracking

Monte Carlo toolkit for simulating passage of particles through matter

- Contains facilities to handle geometry, detector response, visualization and analysis
- Created at CERN by high energy physics community
- Other applications include:
 - Space physics
 - Radiation
 - Medical physics
- Expanding to neutron scattering

ESS Detector Group Simulation Framework

(T. Kittelmann, X. X. Cai, K. Kanaki)

- Geant4 simulation framework
 - Developed by ESS Detector Group
 - Used by other ESS groups e.g. Accelerator Division, Target Division, Neutron Optics and Shielding Group, in-kind collaborators
- Includes:
 - User-friendly build system
 - Python interface
 - 3D visualisation (via Open Scene Graph)
 - Easy-to-handle histograms for analysis
 - Griff: an user-friendly binary format for saving results
 - Powerful parameter scanning without source code recompilation
- Intuitive & well documented
- Fast development of new simulations
- A subset of its tools is presented in this talk

Sample Detector

Isotropic scattering particles simulated from sample

Available, just send an e-mail!

Contact:

Thomas Kittelmann: thomas.kittelmann@esss.se
Xiao Xiao Cai: xcai@dtu.dk
4
Kalliopi Kanaki: kalliopi.kanaki@esss.se

T. Kittelmann et al., "Geant4 based simulations for novel neutron detector development", arXiv:1311.1009v1

The NCrystal project

(X. X. Cai, T. Kittelmann)

User sample (anything, like crystals)

- Several crystalline components in a neutron instrument
 → correct modelling of interaction with poly- and single-crystal materials is essential.
- NXSG4 library created to handle Bragg scattering on poly-crystalline materials (T. Kittelmann, M. Boin. "Polycrystalline neutron scattering for Geant4: NXSG4", Computer Physics Communications 189, 114-118 (2015), doi:10.1016/j.cpc.2014.11.009)
- NCrystal advances this effort
- Validated cross section curves available to Geant4, McStas or any other application via a well-defined interface
- NCrystal 1.0 prerelease is already available within the ESS simulation framework.
 - Includes single- and poly-crystal Bragg scattering
 - Simple (empirical or first principle) parameterization of background contributions
- NCrystal 2.0 is on its way
 - Improved treatment of inelastic scattering with sampling of 2D scattering kernels or 1D phonon spectra
- Will appear at: https://github.com/mctools (mid-July)

Scattering in Geant4 without and with NCrystal

free-gas model

polycrystalline material

Agreement between NCrystal cross sections and published data

Reproduction of Bragg scattering in Geant4

(E. Dian, see A. Khaplanov's talk in ThuB1-1, 13.07, 10:00)

Back-scatter from the unshielded rear wall of the detector at 4.6 Å

Measured ToF-depth characteristic and backscatter phenomena reproduced with simulation at 4.1 and 4.6 Å

Simulation of the PUS@IFE diffractometer

(X. X. Cai)

- Simulation includes collimator, Ge monochromator, Al₂O₃ sample, shielding between sample and monochromator
 - Very good agreement with the measured diffraction pattern at intensities, peak positions and widths
 - Discrepancy at low angles understood and will improve with NCrystal 2.0
- Long list of materials are validated and available (~50 materials validated, simple and compound)
- NCrystal currently being integrated with Geant4 and McStas
- NCrystal is a crucial component to a complete simulation of a neutron instrument.

Monte Carlo Particle Lists: MCPL

(T. Kittelmann, E. Klinkby, E. B. Knudsen, P. Willendrup)

Red: already implemented, MCNP5 added recently

Contact:

mcpl-developers@cern.ch

T. Kittelmann et al., "Monte Carlo Particle Lists: MCPL", Computer Physics Communications, Volume 218, September 2017, Pages 17-42, ISSN 0010-4655 https://doi.org/10.1016/j.cpc.2017.04.012

http://sine2020.eu/news-and-media/mcpl-a-new-format-that-simplifies-data-interchange-between-applications.html

- Well-defined and flexible binary file format containing full information of particle properties
- Facilitates communication among software packages (e.g. McStas, Geant4, MCNP)
 - Can be easily implemented for other simulation packages
 - C/C++/python hooks available
- Can be used within a single software application
- MCPL files can be modified, merged, filtered and histogrammed
 - · With a single terminal command
 - Enhanced facilities within the ESS simulation framework
- https://mctools.github.io/mcpl/
- Open source tool, available to everyone

MCPL use-case for detector optimization

- Detector design can benefit from optimization against 'realistic' input (not only monochromatic or pencil beams)
- Simulate the McStas instrument output at the sample position
- Use the MCPL output file as input for Geant4 detector simulations
- Study detector rates, efficiency, scattering, resolution effects
- Look at scientific quantities from detector simulation

6/6548

- Advances and improvements in simulation tools for the neutron scattering community are presented.
- NCrystal allows a detailed evaluation of instrument and detector performance.
 - Bragg scattering on polycrystalline materials
 - Bragg scattering on single crystals
 - Accurate treatment of inelastic scattering component
 - Includes library of validated materials
- MCPL, an efficient exchange file format, improves communication between simulation tools
- Tools publicly available for everyone to use (and expand)
 - Already available in the ESS simulation framework

Thank you for your attention!