

Status of the BAND-GEM detector: improved demonstrator

A. Muraro¹,G. Croci^{1,2,3}, G. Grosso¹, E. Perelli Cippo¹, M. Tardocchi¹, F. Murtas⁴, M. Rebai^{2,4}, C. Höglund^{5,6}, L. Hultman⁶, J. Birch⁶, G. Albani³, L. Robinson⁶, R. Hall-Wilton^{6,7}, D.Raspino⁸, N. Rodhes⁸, E. Shooneveld⁸ and G. Gorini^{3,4}

¹Istituto di Fisica del Plasma (IFP-CNR) – Via Cozzi 53, 20125 Milano, Italy

²INFN – Sez. Di Milano-Bicocca – Piazza della Scienza 3, 20126 Milano, Italy

³Dipartimento di Fisica, Università degli Studi di Milano-Bicocca – Piazza della Scienza 3, 20126 Milano, Italy

⁴INFN – Laboratori Nazionali di Frascati –Via Fermi 40, 0044 Frascati, Italy

⁵European Spallation Source ESS AB, P.O. Box 176, SE-221 00 Lund, Sweden

⁶Department of Physics, Chemistry and Biology (IFM), Thin Film Physics Division,

Linköping University, SE-581 83 Linköping, Sweden

⁷Mid-Sweden University, SE-851 70 Sundsvall, Sweden

8IFE: 8STFC-RAL, ISIS facility, Didcot, Uk

SHOULD WE DETECT THERMAL NEUTRONS WITH GEMS?

- GEM detectors born for tracking and triggering applications (detection of charged particles)....
- ...but if coupled to a solid state converter they can detect
 - Thermal Neutrons → ¹⁰Boron converter
 - Neutrons are detected using the productus (alpha,Li) from nuclear reaction ¹⁰B(n,alpha)7Li
 - Face ³He world shortage
- GEMs offer the following advantages
 - High rate capability (up to MHz/mm²) suitable for high flux neutron beams like at ESS
 - Submillimetric space resolution (suited to experiment requirements)
 - Time resolution from 5 ns (gas mixture dependent)
 - Possibility to be realized in large areas and in different shapes
 - Radiation hardness
 - Low sensitivity to gamma rays (with appropriate gain)
- G. Croci et Al JINST 7 C03010; F. Murtas et Al, JINST 7 P07021; G. Croci et Al, NIMA 720, 144;
- G. Croci et Al, NIMA, 712, 108; G. Croci et Al, JINST 8 P04006; G. Croci et Al, NIMA 732, 217;
- G. Albani et Al, JINST 10 C04040; G. Croci et Al, EPJP 130, 118 G. Croci et Al, EPL, 107 12001
- G. Croci et Al, Prog. Theor. Exp. Phys. 083H01;

ImprovedBANDGEM demonstrator: CAD

ImprovedBANDGEM demonstrator

Detector box equipped with three diagnostic windows 75 mm x 100 mm Borated Grids – 0.91 μm of $^{10}B_4C$ GEM in the middle of the stack Cd sheet on one side for 3D stack

Autumn Tests

- X-Rays characterization @ UNIMIB/IFP-CNR
 - $-4/09/2017 \rightarrow 11/09/2017$
- TREFF line @ FRM-II (Karl Zeitelhack)
 - $-18/09/2017 \rightarrow 22/09/2017$
- EMMA @ ISIS (Davide Raspino)
 - $-09/10/2017 \rightarrow 15/10/2017$

Test @ TREFF: Experimental Setup

Experimental Setup Scheme

Electrical configuration

Reference values: V3= 4900 V (8500-3600) Et1=300 V V1= 5230 V (14000-8770) V4= 1300V (3600-2300) Et2=600V V2= 230 or 270 V (8770-8500) V5= 900V Ei=500V

Test @ TREFF: HVSCAN

Test @ TREFF: Theta Scan

Test @ TREFF: Scan @ ϑ=90°

Test @ TREFF: Stability measurment

Test @ TREFF: Cluster Size measurement

The cluster size measurment was performed with neutrons and with a acquiring window equal to 10 μs . Given that the counting rate of the BANDGEM detector is about 400 Hz (in average one signal every 2.5 ms) , in an acquiring window equal to 10 μs we can see the footprint of each single neutron.

Cluster size measured @ TREF = 1.45 Combatible with measurments @ EMMA

Efficiency estimation @ TREF

The efficiency of the BANDGEM detector @ 4.78 Å was estimated using an ³He tube with an efficiency @ 4.78 Å equal to 96%.

The recorded counting rate of the ³He tube with a 1x2 mm² beam was:

$$cps_{3He}=340 [Hz]$$

$$Efficiency_{@4.78\text{Å}} = \frac{\text{cps}_{\text{BANDGEM@5}^{\circ}}}{\text{cps}_{\text{3He}}} x \frac{0.96}{\textit{Cluster Size}} \approx 0.52$$

Space Resolution measurements

Test @ EMMA: Experimental Setup

BAND-GEM on turntable

BEAM MONITOR Lithium Glass Scintillator $\varepsilon(1 \text{ Å}) = 1.8\%$

Time of Flight Spectra – EMMA 1 $Å < \lambda < 4$ Å

$$C_{BANDGEM,PAD_i}(t = \lambda) = \int_{t=t_1 ms}^{t=t_2 ms} BandGEM_i(t)dt$$

$$C_{Mon}(t = \lambda) = \int_{t=t_1 ms}^{t=t_2 ms} Monitor(t)dt$$

$$\varepsilon_1 = \varepsilon(1 \text{ Å}) = 1.8\%$$

Error: 10%

$$\varepsilon(\lambda) = \varepsilon_1 * \lambda$$

$$\varepsilon_{GEM}(\lambda) = \frac{C_{GEM}(t=\lambda)}{C_{Mon}(t=\lambda)} * \varepsilon_1$$

Monitor Efficiency previously calibrated using ³He tube

First very preliminary results

END

Spare

Efficiency as a function of λ

- Alpha and Li ion escape efficiency from a 550 nm thick ¹⁰B₄C layer = 75%
- Assumes the measured extraction efficiency in the simulation model

Efficiency (at 1 and 2 A) vs tilt angle

Good agreement with simulated values

FWHM vs tilt angle – Space resolution

Good agreement with simulated values Experimental corrected for offset by about 5 degrees Effective resolution \sim independent of λ

High rate test at the ORPHEE Reactor @ LLB-CEA (2)

BAND-GEM linearity.

The count rate is the number of counts in 1 s of the pad that counts most normalised to the area of the pad $(A = 4x3 \text{ mm}^2)$.

The BAND-GEM is <u>linear</u> (relative to the reference FC detector) <u>within a 10% error up to about 4 MHz/cm².</u>

BAND-GEM PARAMETERS:

- $\Delta V_{Grids} = 10 \text{ kV}$
- HVGEM = 870 V
- Tilt Angle = 5°

Neutron Flux = 7.88x10⁸ n/cm²s Reactor power 10.1 MW

High rate test at the ORPHEE Reactor @ LLB-CEA (BANDGEM without GEM in the middle)

Neutron Flux = $7.88 \times 10^8 \text{ n/cm}^2\text{s}$

Linearity scan of BANDGEM with reference detector (Fission Chamber), performed at reactor power 10.1 MW.

The BANGEM is linear (respect to the reference FC detector) up to about 5 MHz/cm². It is linear within a 10% error up to about 10 MHz/cm².

Black dots: BANDGEM count rates per cm²; red line: fit of the data with saturation law; purple line: linear component of the saturation law.

Simulation of detector efficiency as a function of ¹⁰B₄C thickness (without GEM in the middle)

