

nBLM detectors design

Laura Segui

(laura.segui@cea.fr)

nBLM CDR1.1 04/12/2017

- Description of slow and fast detector
- New detector design
- Results from tests
- Future plans for tests

As presented in Irena's talk

- Micromegas BLM detectors chosen for the MEBT and DTL sections.
- Detector sensitive to fast neutrons and not to thermal n (shielding), X- and γ-rays (signal discrimination)
- 42 detector units will be delivered
- Each unit (FS) consists of 2 detectors: F (fast) and S (slow)
- ➤ System designed to be sensitive to small losses → to operate in counting mode with few n/cm2 sensitivity
 - → Extension of the dynamic range to very low particle fluxes
- Current mode for higher rates, other observables can be measured (e.g. Q, ToT, ...)
- > For a section where other BLMs have low sensitivity
- The specific requirements for the system are:
 - Response in 5 µs
 - To be able to detect 10 mW/m losses.
- Two types of detectors: slow and fast
 - Different physical reaction to create the charged particles from the neutrons
 - Different applications

COO NBLM DETECTORS

3

nBLM_CDR11_SlowvsFast_nBLM_Detector.pdf document

	SLOW	FAST						
neutron-to-charged particle convertor	B ₄ C	Mylar or Polypropylene						
Reaction	(n,α) ¹⁰ B	(n,p)						
Signal produced by	Fast neutrons after moderation	Fast neutrons						
Detected energy	~constant (1.4 MeV)	Continuum distribution of energies						
Sensitivity	10 ⁻⁶ < En < 100 MeV	En > 0.5 MeV						
Solid angle	4π	2π , n coming from the front only						
Efficiency	~few n·cm ^{-2·} s ⁻¹	~10-100 times smaller						
Response time	~200µs	~0.01µs						
Objective	Monitoring of small losses	Alarm (in 5 µs) Fine structure of the lost						
Shielding	Yes, for thermal neutrons	Not needed						

COO NBLM DETECTORS GEOMETRY

Detector chamber identical, differences on the: convertor and the surrounding of the slow with absorber + moderator

SLOW

- Absorber shielding
- Detection of fast neutrons after moderation in polyethylene (~4cm)
- ☐ Gas chamber with layer of B4C
 - (n, α) ¹⁰B reaction

FAST

- □ Recoil protons produced by neutrons in polypropylene
- ☐ High flux high energy n's (>0.1 MeV)
- ☐ Faster response

Obtained with a Cf-252 source in slow detector

Typical neutron signal

- Rise Time 30-50 ns
- Pulse duration 100-200 ns
- Amplitude
 - Constant in slow
 - Distribution in fast

NBLM DETECTORS EXPECTED PERFORMANCE

Response and deposited energy

Efficiency with respect to initial

- Slow: has a large dynamic range
- Fast: (n,p) starts at ~ 0.1MeV
- Differences in efficiency of factor 10-100

Spectrum of deposited energy

- Slow: peak from alpha energy

NBLM DETECTORS EXPECTED PERFORMANCE

Time Response

FAST

- ~5% detected in <1 µs
- All in ~200 μs

All detected in 10ns

NBLM DETECTORS EXPECTED PERFORMANCE

Gamma discrimination

SLOW DETECTOR

- Only sensitive to high energy gammas
- with an energy threshold can be rejected

FAST DETECTOR

EXPECTED SENSITIVITY

From MC simulation studies in the DTLs

	Rates								
	1% 1W/m	Complete beam loss (rate in 1 st µs)							
Slow	0.1 – 68 kHz	10MHz – 60 GHz							
Fast	1 – 400 Hz	2-700 MHz							

- The nBLM system originally conceived to operate in counting mode.
- Results from simulations using ESS scenarios as input have shown that rates up to GHz can be expected in cases of <u>complete</u> losses.
- The electronics chosen to be able to cope such rates and to be operative both in counting and in current mode.
- Each neutron pulse will have a duration of about 150ns.
 - The requirement from ESS is to send an BIS flag to MPS in 5µs.
 - If we monitor 1 µs window, taking into account the duration of each pulse, with ~6 events we start having pile-up (at 6MHz)
- The analysis in the FPGA will automatically change between counting and current mode when a rate of this order is obtained as we use ToT.

COO NBLM NEW DETECTORS DESIGN

New mechanics to improve electronic shielding

- Aluminium box of 1.5 mm thickness
- More compact, easier for installation, more "industrialized"
- All connections in front
- Same mechanics for fast /slow chamber
- New electronics: mezzanine cards
 - One for FEE + LV; another for HV
 - More details in FEE's talk

L. Segui 04/12/2017-nBLM CDR1.1 10

COO NBLM NEW DETECTORS DESIGN

Detail of gas chamber

Assembly of detectors showing the MMs inside the fast

COO NEW DETECTOR PRODUCTION

Mechanics

- Initially construct **4 chambers** → January 2017
- When finalized, ~90 chambers
- Production to start in ~June 2018
- Contact with several workshops for the production

Micromegas

- 3x3 detectors per PCB
- **2 boards** initially to be order
 - Price offer received
 - Production for Dec 2017 Jan. 2018
- Final production 12-15 boards by June 2018
- Bulking at DEDIP lab ~20 working days
- Pre-series production to start immediately

FEE + HV boards

Design on-going

Gherber for 3x3 MMs board

Actual design with electronics on-board. The detector itself does not change

NBLM DETECTORS SUPPORTS 1ST PROPOSALS

- Rail along DTLs and MEBT
- Along SPK, under discussions
- Single support for the isolate detectors in MB, HB and PBW
- Along the rail, cable tray to pass the cables and gas tubes
- Flexible detector adaptor to move easily along rail during commissioning
 - Detector can also be placed with an angle

Proton beam

Status and plan

- Received stp file of DTL, SPK and MFBTfrom T. Grandsheart
- Daniel Desforges (mechanical designer at CEA) to integrate rail in **FSS-3D** model
- Meeting on Tuesday to discuss more details with installation group
- Several interactions foreseen
 - Where to attach them, how, height?
- Designed finalized and integrated in model for CDR1.2

- Different tests planned in order to fully characterize nBLM performance
- First beam test done between the 26th -29th November 2017 (next slides)
- Next year with new prototypes
- DAQ probably not available until March-June

COO NBLM PLANNED TESTS

Test Facility	Particle	Energy Max	Test	Date		
Birmingham MC40	Protons to material target	28 MeV	Study response under different loss scenariosElectronics ageing	Nov-17 + in 2018		
LINAC-4	Protons	160 MeV	RF backgrounds and response to losses	January 2018 Summer 2018		
ORPHEE CEA/Saclay	Thermal neutrons	Few keV	Response to thermal neutrons	Q1 2018		
Amande (CEA/Cadarac he)	Mono-energetic neutrons	From 250 keV to 15 MeV	Efficiency studies. Different poly and convertors thickness	March 2018 (6 days)		
IPHI	Neutrons	1MeV	Response study for different energies	March 2018		
Upssala	Testing the ESS cryo-modules		Response to RF backgrounds	From January 2018		

NBLM PERFORMED TESTS AND LESSONS LEARNED

Tests at DEDIP Lab

- With a Cf-252 source, very weak
- Both detectors tested with first prototypes
- To tune gain in preamplifiers
- To understand better the noise and to improve shielding
- Helpful to develop algorithm
 - Test it with real data

Tests at DEDIP Lab

- With a Cf-252 source, very weak
- Both detectors tested with first prototypes
- To tune gain in preamplifiers
- To understand better the noise and to improve shielding
- Helpful to develop algorithm
 - Test it with real data

Tests at DEDIP Lab

With a Cf-252 source very weak

SLOW DETECTOR

Analysis by G. Tsiledakis

- Changing the amplification voltage
- Drift constant
- Studies also changing the drift cross-checked with simulations

L. Segui 21/11/2017 – 4th ESS-BI Forum

Tests at DEDIP Lab

With a Cf-252 source very weak

FAST DETECTOR

Analysis by G. Tsiledakis

- Only one run taken so far
- No peak in amplitude as expected
- But ToT can be used instead

[ns]

Tests at MC40 Birmingham Irradiation Facility

- MC40 medical synchrotron
- Protons up to 30 MeV
- Beam diameter ~1cm
- Continuum pulse
- Data taken at 28 MeV and
 - 0.017, 0.025, 0.044, 0.051,
 0.08, 0.10 nA
- Proton beam into Al plate φ=1cm

Thanks to Kostas Nikolopoulos

Tests at MC40 Birmingham Irradiation Facility

Thanks to Kostas Nikolopoulos

First observations

- Detect rates between 1-10 kHz
- See difference in rate when changing the intensity

BACK-UP

NBLM DETECTORS SIGNALS

SLOW

- Neutron converted at the drift entrance
- Convertor: B-10
- (n, α) reaction. The α has always the same energy.
- The produced α enters the gas volume ionizing it.
- The amplitude is almost constant as the energy is always the same. It will have a certain distribution as it depends on the angle of the emitted alpha
- Efficiency ~1% for all neutron energies
- Time response is ~150µs
 - About 10% of events detected in 4µs
 - The delay is introduced by the moderation time of the neutrons in the moderator
- Each event detected (alpha ionizing the gas) has, more or less, same pulse duration ~100-200ns

FAST

- Neutron converted at the drift entrance
- Convertor: plastic
- (n,p) reaction. P with continuum of energies
- Emitted in the opposite direction of the arrival of the neutron.
- Reaction threshold at ~0.1MeV
- The efficiency is much lower in this detector
- However, as there is no moderator the time response is very fast, of ~10ns.

NBLM PLANNED TESTS

	Nov. 2017 Dec. 2017			Jan. 2018				Feb. 2018				March 2018				April 2018								
Test Facility	W1	W2	W3	W4	W1	W2	W3	W4	W1	W2	W3	W4	W1	W2	W3	W4	W1	W2	W3	W4	W1	W2	W3	W4
Birmingham																								
LINAC-4										Inst	allat	ion	Ope	ratio	on									
ORPHEE																								
CEA/Cadarache					Ask	for t	ime						Time	e wil	ll be	allo	cate	d her	e (60	days				
IPHI n																								
Cryo. at Upssala																								

Other test we are looking for is a gamma irradiation facility. One has been identified in CEA/Saclay but at a high budget. Irena mentioned the possibility to use a source here in Lund University.

SLOW nBLM 4 Extretolises M3 - V4 8 290 4035 - MJ Ecrous hexagonaux has (avec charifrein) - Produit de classes A et B 1 Plaque d'alu boré V4 4 Rondelle oframique 3x5 12 Rondelle oframique 3x2 1. Deni boile interne inférieure V4 Matière: Dural 1 Dent bolte interne supérieure V4 Matière: Dural 1 PCB central V4 (capteur inclus) 28 190 4762 - M2,5 x 20 Vis cultridrique à six pans creux PCB Dates 1 PCB HT 8 250 4762 - M3 x 4 Vis cylindrique à six pans creux 2 Passe parole pour tube de 6mm Swegelok - 55-47KD-61 2 Capot interne électronique Tole d'aluminium épaisseur 1,5mm Tole d'aluminium épaitseur 1.5mm 2 /3:7580000 - SHV Banche - corps High voltage BNC solder buildhead lack 12 ISO 7046-1 - M3 x 4 - 4.8 - H Vis à tête fraisée plate (type de lête standard) avec empreinte cruciforme. 2 Joint torique interne 20 2 Tube curve Danètre 6-externe / 4 interne 2 Cadre bindage polyéthylére 40-20 lépaisseur 20 1 Cadne externe inferieur Matière: Dural 1 Cadre externe supérieur Matière: Durai Capteur étanche) 16 290 4762 - M4 x 70 Vis cylindrique à six pans creux 1 Cadre blindage polyethylene 40-12 lepatioeur 12 2 Vis & bille Mb HPC - BPMS 8 Entretoties Male Femele M3x10 Standard RS 1 Couvercle 15 à échanorure Polyethylene Cadre de maintien des couvercles. Matière: Durai 40 ISO 4762 - M3 x 16 Vis cylindrique il six pans creux Matière: Dural Interface support d'équerre 4 190 4762 - M6 x 20 Vis cylindrique à six pans creu SO 296 - N - Fg 32 CEA Saclay nBLM Liste des pièces

12

A 1/16

Capteur lent some centrale V4-1

DRF/IRFU/DEDIP

(14)

NBLM DETECTORS INTEGRATION IN ESS (I)

- System of 82 detectors will be installed
 - 164 HV cables + 82 signal cables + 3x82 LV cables + gas lines
- Detectors will be grouped for the gas lines and amplifiers low voltage cables
- Two type of patch panels (2x6):
 - Gas
 - Cables connectors
- Start design of detectors support
 - Rail along linac
 - Flexibility to move the detector in order to optimize the beam losses detection

Detectors in	Gas line	# of detectors				
MEBT-DTL1	Line 1	12				
DTL2	Line2	8				
DTL3	Line 3	8				
DTL4	Line4	8				
DTL5	Line 5	8				
SPK1-4	Line6	8				
SPK5-8	Line 7	8				
SPK9-13	Line8	10				
MB-HB	Line 9	4				
Bend Magnet	Line 10	6				

DE IN RESERVOR T LINEURERIE

FAST nBLM

COO NBLM DETECTORS INTEGRATION IN ESS (II)

General design

- The gas system consists in 3 parts:
 - 1. The bottle storage area outside the building
 - 2. Gas distribution system
 - Distribution and return lines from (to) the rack to (from) the accelerator tunnel
 - 10 distribution + 10 return lines
 - 3. Gas Line system fo group of detectors

COO NBLM GAS SYSTEM

- Micromegas are gaseous detectors. Work in circulation with open circuit
- High reliable system for the 84 detectors

COO NBLM GAS SYSTEM

- Gas: He + 10% CO₂
- Flow: ~ 5 l/h, in recirculation
- P ~ 1 atm
- Volume/detector ~ 0.25 l
- Leak tight and low outgassing
- Gas bottle storage: 6-12 rack premix
 - ~200 bar/bottle, 50 l →
 - 2 IN/2 OUT lines (1 in use, 1 spare)
 - Outside gallery
- From gas bottle to gas rack to patch panel to tunnel
 - Distribute in 5 lines → one per DTL, in parallel
 - 5 IN/5 OUT Lines going to tunnel (+ spares)
 - Electrovalve in/out in Klystron gallery
 - Isolate system
 - Flowmeter in/out in Klystron gallery
 - Leak monitoring
- Gas in serial for detectors in DTL

Designed by Stephan

NBLM DETECTORS INTEGRATION IN ESS (III)

Detail of one nBLM gas distribution patch-panel

