

nBLM gas system status

Laura Segui on behalf of S. Aune

(laura.segui@cea.fr)

nBLM CDR1.1 *04/12/2017*

- General overview
- Design status
- Distribution of lines and detectors
- Gain stability and time for stable operation

GENERAL CHARACTERISTICS & DESIGN

- Micromegas operates in gas
- > nBLM system will work in recirculation mode
 - Fix flow rate during operation
- The main requirement of the system is to present a high reliability while keeping the operability of the 42 modules stable
- We start from the premise of a simple concept but redundant and with control command with PLC

GENERAL CHARACTERISTICS & DESIGN

General design

- The gas system consists in 3 parts:
 - 1. The bottle storage area outside the building
 - 2. Gas distribution system
 - Distribution and return lines from (to) the rack to (from) the accelerator tunnel
 - 10 distribution + 10 return lines
 - 3. Gas Line system for group of detectors

GENERAL CHARACTERISTICS & DESIGN

Gas type	He + 10% CO ₂	Used of premixed bottles (200bar)	
Total flow	8 - 16 l/h (feeding/exhaust lines)	Limitation of possible maximum flow immediately after gas bottle at ~20-30 l/h with a rotameter (0-50 l/h)	
Flow per line	1-2 l/h (distribution/return lines)	Detectors in series	
Pressure after bottle	2 bar total	Release valve at ~4 bar	
Pressure for distribution	1atm + 200 mbar (tbc)	Depends on final pipe cable length	
Pressure at exhaust	1atm + 50 mbar	Pressure and flow will be controlled by PLC.	
Tubes	 - 6/8 mm (inner/outer) for the IN/OUT and distribution lines - 4/6 mm for the connection to each detector 	 Stainless steel Metric connections, Swagelok connectors Can be flexible stainless steel hose in some points Connection to detector could be made by polyethylene tubes to avoid parasitic electrical noise 	

COO NBLM GENERAL VIEW

GAS SYSTEM STATUS

Since PDR1.2

- Detailed study to address possible system failure scenario and to minimize commissioning and intervention times
 - nBLM_subsystemsRiskFailuresAnalysis.pdf send within this CDR1.1
 - Added possibility for complete manual bypass of PLC and electronic flow controllers
 - Include pumping points
 - Drop in flow will be monitored both through the flowmeters and by monitoring the detector gain and rate
 - Calculation of the remaining gas in the gas bottles storage area is foreseen in EPICs
 - Access to bottle manometer protected
 - Budget increase
- Decision in installing 10 lines IN + 10 lines OUT from gas rack to accelerator tunnel (more in next slides)
- Design of part of system finalized in order to fit to the ESS installation schedule,
 - from bottles to gas controller rack
 - And from rack into tunnel at distribution points
- Extra resource was needed (thank you to Fredrik Persson) due to the very tight time constraints
 - P&IDs done, to include in 3D model soon

COO BOTTLE STORAGE AREA

Premix He + 10% CO₂

Instrumentation schema for gas storage system

ESS nBLM

- B-50 bottles (50 litters) of 200 bar
- Operating at 1 bar, 6 bottles last 250 days
 - Purity for each gas N5.0 (99.9990 %)

- Manometer to adjust to 2 bar
- Purging valve
- Rotameter (at 30l/h)
- Release valve (at 7bar)

L. Segui 04/12/2017-nBLM CDR1.1 7

Input DTL line

Gas distributor

Hand valve

Electro valve

- 10 group of detectors
- 10 Input lines + 10 output lines
- Max. number of detector per line ~12

Patch panels

- 6 patch panels
- All equal, 2 lines per pp.
- But at HE only one connector used
- Positions decided
- Possibility to by-pass one line if leak

Gas Ilne	Patch Panel Number	Position of PP (aprox)	Number of detectors	Detectors in
Line 1	PP-1	end DTL1	12	MEBT-DTL1
Line2	FF-I	end DTLT	8	DTL2
Line 3	PP-2	end DTL3	8	DTL3
Line4	FF-2		8	DTL4
Line 5	PP-3	end DTL5	8	DTL5
Line6	PP-3		8	SPK1-4
Line 7	DD 4	end SPK8	8	SPK5-8
Line8	PP-4	ena Seko	10	SPK9-13
Line 9	DD 5	beginning of HB region	4	MB-HB
No line	PP-5		No line	No line
Line 10	PP-6	PBW	6	Bend Magnet
No line	FF-0	FDVV	No line	No line

COO DISTRIBUTION OF GAS LINES

11

- Detectors in series in each group
- Fast closing valves between them
- Detector installed (first time or after intervention) filled with gas.
- Lines can be pumped down

TIME FOR STABLE OPERATION

- Estimate time needed to have detector operational after first installation or after intervention
- Assume we install the detector filled with gas
- And we have pump down the pipes
- We will need to change the volume about 5 times

	Time if with gas (h)	Time if with air (h)
Low Energy	2-3	12-16
SPK 8-13	3-5	24
MB, HB	8	43
PBW	17	86

- Assume distance from bottles to rack = 10 m
- Assume distance from rack to proton source = 50m

GAIN STABILITY

Detector sealed, no gas circulation

- After 5h gain drops a 30%
- After 12h a 50%
- and after one day there is no signal over background

THANK YOU

BACK-UP

COO NBLM GAS SYSTEM

- Gas: He + 10% CO₂
- Flow: ~ 5 l/h, in recirculation
- $P \sim 1 atm$
- Volume/detector ~ 0.25 l
- Leak tight and low outgassing
- Gas bottle storage: 6-12 rack premix
 - ~200 bar/bottle, 50 l →
 - 2 IN/2 OUT lines (1 in use, 1 spare)
 - Outside gallery
- From gas bottle to gas rack to patch panel to tunnel
 - Distribute in 5 lines → one per DTL, in parallel
 - 5 IN/5 OUT Lines going to tunnel (+ spares)
 - Electrovalve in/out in Klystron gallery
 - Isolate system
 - Flowmeter in/out in Klystron gallery
 - Leak monitoring
- Gas in serial for detectors in DTL

Designed by Stephan Aune

