

nBLM Front-End Electronics

Laura Segui on behalf of Philippe Legou

(laura.segui@cea.fr, Philippe.legou@cea.fr)

nBLM CDR1.1 04/12/2017

- Detector design
- Amplifiers
- Cables and connectors

COO DETECTOR PCB

COO DETECTOR PCB

Final design

- Separate cards
- Mother board:

MMs detector

- Mezzanine cards:
 - HV and LV
 - Signals
- Signal is amplified before sending it to the back-end electronics
- Detector same as in prototypes

Mezzanine cards

- Separate HV, LV from signals
- Easier maintenance
- Flexibility for the replacement or
- Reduce the manipulation on the detector card after the bulking process

> Two options for testing, similar principle

- > Two options for testing, similar principle
 - Flexibility in summing 1 to 4 strips to be adaptable to flux
 - Front End Board Size ≈ 10 x 6 cm
 - Output : SMA Connectors
 - Buffer : even if we have low Attenuation cables
 - One buffer 15mA → 120mW

Front end module

FAMMAS front-end module

(Fast Amplifier Module for Micromegas ApplicationS)

Infrared tests performed

In few figures ...

- Power supply : +5V -5V
- Input: positive or negative
- Noise: 600 μV rms
- *Rise time : < 1ns*
- weight : 4g
- Size: 22 x 20 x 5 mm

Same design for final electronics. After tests final tuning in

- Gain
- Noise filtering (decide bandwidth)

CONNECTORS

3 Levels:

- 1. In rack
- 2. After stubs before repartition to each detector
- 3. In the boards

For the racks

- HV: Adaptor is a patch panel, SHV outputs
- LV: small patch panel for distribution
- Signal: small patch panel before going to the FMC card

Patch-panel in tunnel

- One per group of detector. The maximum number of detectors per group is
 12. Assuming an extra 25% spare connector → connectors for 15 detector.
 - 60 HV connector (30 SHV IN, 30 SHV OUT)
 - 48 LV connectors (3 IN, 45 OUT):
 - 30 signal connectors (15 IN, 15 OUT)

CONNECTORS

3 Levels:

- 1. In rack
- 2. After stubs before repartition to each detector
- 3. In the boards

For the detectors

- Connectors in the chamber of the detector
 - 5 SMA (2 signal, 2LV, 1 GND)
 - 2 SHV
- In the boards
 - High reliability connectors appropriate for high radiation environments (Harwin connectors)

Signal Harwin Gecko Screw-Lok Vertical DIL PC Tail G125-MV11005M2P G125-FV11005F1P

HV and LV Harwin M300 SIL Vertical PC Tail Connector. The exact reference is M300-FV1034500 and M300-MV10345M1

- Each nBLM detector needs:
 - √ 2 HV cables (mesh and cathode)
 - √ 1 signal output cable
 - √ 3 cables for the LV: +5V, -5.2V, GND
 - Decided to bring to tunnel 1 pair of cables for each patch panel and from them distribute a set of 3 to each detector

	Cable ref ESS	
LV	3C2OSHF	3 cables
	LCF38-50J	Coaxial + shielding, 3.7Ω/km
Signal	Triax_1C20RG-58_20kV	Triaxial, 50Ω , $102 \text{ pF/m,but } ?\Omega/\text{km}$
	Hf43e_0.pdf	Triaxial, 50Ω , 101 pF/m,but 37Ω /km
HV	2xC(st)H	Triaxial, 50Ω

Product Data Sheet	LCF38-50J	RFS		
3/8" CELLFLEX® Low-Loss Foam-Dielectric Coaxial Cable				

■ Cable caracteristics :

- Low Attenuation
- Complete Shielding
- Halogene Free

Electrical Properties

Characteristic impedance	[Ω]	50 +/- 1.5
Relative propagation velocity	[%]	88
Capacitance	[pF/m (pF/ft)]	76 (23.2)
Inductance	[µH/m (µH/ft)]	0.19 (0.058)
Max. operating frequency	[GHz]	13.5
Jacket spark test RMS	[V]	5000
Peak power rating	[kW]	15.4
RF Peak voltage rating	[V]	1240
DC-resistance inner conductor	$[\Omega/\text{km} (\Omega/1000\text{ft})]$	3.8 (1.16)
DC-resistance outer conductor	[Ω/km (Ω/1000ft)]	2.9 (0.88)

We plan to use an extra shield around coaxial cables to increase the shielding

BACK-UP