
WIR SCHAFFEN WISSEN – HEUTE FÜR MORGEN

ECP and File Writer control

Michele Brambilla, Dominik Werder, Nikhil Biyani

BrightnESS WP5 Second Integration meeting
ELETTRA, Trieste

• new command format

• start & stop time

• status report & heartbeat

• initial values

• file/StreamMaster tagging

FileWriter integration with NICOS

2

• change NeXus structure ➠ streams in NeXus structure

• write attributes

• added stop vs exit command

Command Format

3

{
 "nexus_structure": {
 "children": [
 {
 "children": [
 {
 "type": "stream",
 "stream": {
 "topic": "topic.with.multiple.sources",
 "source": "for_example_motor",
 "writer_module": "f142",
 "type": "float",
 "array_size": 4
 }
 },…

Command Format

4

• change NeXus structure ➠ streams in NeXus structure

• write attributes

• added stop vs exit command

Command Format

5

{
 "cmd": "FileWriter_exit"
}

{
 "cmd": "FileWriter_stop",
 "job_id": "1234567890abcdef",
}

• change NeXus structure ➠ streams in NeXus structure

• write attributes

• added stop vs exit command

• start & stop as soon as the the command arrives

• provide a specific time:
• start back in time
• start in future time
• stop in future time
• stop in past time

Start and Stop

6

➠ RdKafka::offsetsForTimes + drop messages
➠ drop messages
➠ FlatBuffer timestamp > StopTime + Delta
➠ same as before, but can be tricky

Start and Stop

7

{
 "cmd": "FileWriter_new",
 "start_time" : 1234,
 "stop_time" : 12345,
 …
}

• start & stop as soon as the the command arrives

• provide a specific time:
• start back in time
• start in future time
• stop in future time
• stop in past time

➠ RdKafka::offsetsForTimes + drop messages
➠ drop messages
➠ FlatBuffer timestamp > StopTime + Delta
➠ same as before, but can be tricky

Start and Stop

8

{
 "cmd": "FileWriter_stop",
 "job_id": "1234567890abcdef",
 "stop_time": 1517242388000
}

• start & stop as soon as the the command arrives

• provide a specific time:
• start back in time
• start in future time
• stop in future time
• stop in past time

➠ RdKafka::offsetsForTimes + drop messages
➠ drop messages
➠ FlatBuffer timestamp > StopTime + Delta
➠ same as before, but can be tricky

• assumptions:
• start & stop time in milliseconds (in command)
• FlatBuffer pulse_time (not kafka timestamp) in milliseconds

• works with NICOS

Start and Stop

9

➠ RdKafka::offsetsForTimes + drop messages
➠ drop messages
➠ FlatBuffer timestamp > StopTime + Delta
➠ same as before, but can be tricky

• start & stop as soon as the the command arrives

• provide a specific time:
• start back in time
• start in future time
• stop in future time
• stop in past time

Start & Stop: possible issues (and solution)

10

• there are many sources in a topic ➠ keep a sources count, eventually
decrease the counter; when there are no sources close the stream

• one source can stop producing messages (for any reason) before
StopTime is reached ➠ if msg->err() == End Of Partition && system
time > StopTime + Delta remove source

• solves slow sources: Delta > time between messages in slower source

• start & stop as soon as the the command arrives

• provide a specific time:
• start back in time
• start in future time
• stop in future time
• stop in past time

➠ RdKafka::offsetsForTimes + drop messages
➠ drop messages
➠ FlatBuffer timestamp > StopTime + Delta
➠ same as before, but can be tricky

• A source in a topic could not have received updates since long time. How
much back in the log has to file writer to dig?

1. we can force the forward to “refresh” PVs every x minutes
2. NICOS already has a cache, we can use the “last known value”

Initial values

11

N. Biyani - 6th ECP Workshop

• A source in a topic could not have received updates since long time. How
much back in the log has to file writer to dig?

1. we can force the forward to “refresh” PVs every x minutes
2. NICOS already has a cache, we can use the “last known value”

• Pros and cons

1. more traffic on the network, more work for the forwader
2. due to latencies on the network the “last known value” NICOS

knows could not be the actual last value

• Combine the two? NICOS proposes a value, if there’s no more recent in
the forwarder accept NICOS one

Initial values

12

• each StreamMaster (i.e. file) regularly provides a report of the consumed
messages (number and bytes), errors and status (running, finished, error
status)

• the report says when the next report is expected - works as an heartbeat

• in addition the report contains information for each stream: bandwidth,
message frequency, message size

Status report & heartbeat

13

{
 "type": "stream_master_status",
 "next_message_eta_ms": 2000,
 "stream_master": {
 "state": "running",
 "messages": 100.0,
 "Mbytes": 1000.0,
 "errors": 0.0,
 "runtime": 22002
 },
 "streamer": {
 ...
 }
}

• could be integrated with the file writer (Master) info:

• advantages:
one single message; no need to figure out which file produced it;

• disadvantages:
can’t figure out which file produced it; a failure in the stream could
affect the master process; components are disentangled ➠ simplicity;

Status report & heartbeat

14

{
 "type": "filewriter_status_master",
 "files": {
 "0000000000000004": {
 "filename": "a-dummy-name.h5",
 "topics": {}
 }
 }
}

• configuration file is fully working, added new options

• can configure default output path
• can be used to configure file writer & kafka options

• logging: added severity levels in the form of enum class Sev

• only in file writer (no forwarder)

• each file is tagged using a unique id (specified in start command)

• the unique id has to be given to stop each write process
• the report from the stream can be associated with the file

Extra

15

• currently each repository (file writer, forwarder, amor simulation) has its own
ansible folder

• on the ansible “master” machine there is a copy of the tools source

• on the ansible “target” machine there is a copy of the ansible scripts

• we can get rid of this using a “dmsc-ansible” repository and removing ansible
folders form single packages

• easier to maintain: dependencies can be uniquely defined, avoid multiple
installation same dependency, …

• dm-dev-env repo is outdated: shall we use a new machine (see Nikhil dm-sinq-
amor) or remove the repository?

• who is in charge to handle “file is already open” ? NICOS or file writer?

• NICOS “proposes” the file name; eventually the file writer append some id
(timestamp?); NICOS gets the file name from the file writer status

Ansible management & other remarks

16

