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Code Comparisons

@ GEANT4 is a C++
framework for physics

@ GEANT4 has an
advanced geometry
management system

@ Object-oriented,
inheritance-based

@ Easy to code, nightmare
to safety validate (but
that’s not what it’s for)

DNA'Scale Level Simulation
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Introduction

Code Comparisons

@ PHITS and MCNP are , |SEEYOUTESTYOUR CODE IN
monolithic programs L TN
@ Program can be -
validated with standard
inputs
Ly .
@ Easy to validate, 1700 LIKE TO LIVEDANGEROUSLY |

nightmare to code
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Simulation Strategy

@ Use GEANT4 for physics
and backgrounds

@ Use PHITS/MCNP when
necessary for safety
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Simulation Strategy Part 2

@ PHITS and DCHAIN are
actually VERY fast

@ Can explore material D&t 8 T
. . 4
activation several m by o
away from target in a . ;

few minutes on a laptop
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Introduction

Material Activation

Phil Bentley (ESS)

Good understanding of
materials in bunker

Possible to optimise for
human access

No show-stoppers

Several “forbidden”
materials

Good convergence with
regular communication
with Radiation
Protection group
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GEANT4 vs Other Tools

@ G4 is free, from CERN, T A
but now worldwide e | B
collaboration £ T

ua» N\ W

@ Extremely well N e
benchmarked physics N SOOI v S

@ Convenient C++
geometry management g, A ﬁ“‘”i

@ Important for us: 3 7 } LH
Detector group makes g"
highly detailed detector B H Goarta |
models in GEANT4 B - MoNPX W‘W

@ We have spent lots of R vy e
time benchmarking (see
Doug’s talk)

Phil Bentley (ESS) Possible implementation and collaboration of | 19th January, 2018 7/44



Bunker Comparisons

Bunker Model Comparisons

@ The bunker is a common
shielding area near the
target

@ (Picture on the right is
an older version)

@ ltis quite large, bigger
than the JPARC bunker,
but a similar idea
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Bunker Model - IFE

@ FLUKA work by Rodion
Kolevatov (IFE, Norway)

@ The dose rate is
dominated by neutrons

@ Streaming of
intermediate energy
neutrons through the
bunker wall plug affects
the dose, leading to a
suggestion to add
polyethylene near the
wall penetration.
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Bunker Model - IFE

Daose rate outside bunker; ZX plane cut at guide height; contours forl0000, 1000, 100, 10 and 1 uSv/hr
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Bunker Model - JPARC

@ PHITS work by Kazuo
Takeda (RIST, Japan)

@ The roof and wall appear
to meet the dose rate
objectives for neutron
dose, but there is no
obvious opportunity to
remove shielding

@ Wall: need for additional
gamma shielding
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Bunker Model - JPARC

Model, plan view Neutron dose distribution
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Bunker Model - ESS - Roof

o ComblLayer/MCNP work =

by Stuart Ansell .‘

@ In agreement with
previous two results
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Bunker Model - ESS - Roof
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Bunker Model - ESS - Wall

@ ComblLayer/MCNP work

by Stuart Ansell
@ In agreement with
preViOUS two results 01 1.0 100 100 1000 led 1e5 1e6  1e7 1e8
. . (NI \ LI HIW HHHHW LIl
@ No guide penetration, - usw/} -

additional integration
needed for real
instrument
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Bunker Model - ESS - Wall
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Core Physics
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Fast Neutron Albedo

Source Shielding

@ Albedo refers to
scattered rays
@ Moon rock is actually

black, but appears white
in the sky

M Ames; Luc Viatour / www.Lucnix.be
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Fast Neutron Albedo

@ Between 30% and 70% = nEvl
of fast neutrons are S i L
scattered back towards /5/ e
the source e

@ Easy fact to remember: NEER ]

e roughly half of fast L

o
0 09 08 07 06 05 04 03 02 Of o
cos 8,

neutrons hitting
Shle/d’ng will come Fig. 4.3. Total Single-Collision Dose Albedo as a
back out aga/n Function of cos 0y and AE, for Fast Neutrons (>0.2

MeV) Reflected from Concrete. (From Maerker and
Muckenthaler, ref. 1.)

W. E. Selph, ORNL-RSIC-21 (DASA-1892-2)
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Fast Neutron Albedo

e Between 30% and 70% CEm p
of fast neutrons are S = =
scattered back towards /z/§ =
the source R e |

@ Easy simplification to . |
remember: 1T

o
{0 09 08 07 06 05 04 03 02 04 o

e roughly half of fast st
neutrons hitting

Fig. 4.3. Total Single-Collision Dose Albedo as a

shle/d,ng will come Function of cos 0y and AE, for Fast Neutrons (>0.2
. MeV) Reflected from Concrete. (From Maerker and
back out again Muckenthaler, ref. 1.)
@ Compare that with et R R R
supermirrors! o
@ Of course, supermirrors fos

only work at very small o

010

. 000
grazlng angles 05 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

m-value
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Multiple Line of Sight

@ Losing line of sight if ‘ .
. 10t |
possible saves cost m MMW i bock
@ Certainly helps with wE | “ M.,
background ol e
@ Diminishing returns after o
2x LOS ' IR | ”Iﬂlﬂﬂﬂé I

@ Twice line of sight is
recommended strategy
for cost and background

@ Instrument project
should look at at least
one option

V. Santoro et al
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Core Physics

Secondary Particles

@ Pion production begins at energies of order 100s MeV

@ Hadrons (neutrons, protons) of this energy are readily scattered
@ Each pion can also scatter

@ Any interaction can free neutrons

@ This is spallation
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Secondary Particle Equilibrium

@ Secondary neutrons are , - -
important P 2 o cev
@ Simplification: e U
o Logarithmic behaviour | e ]
only begins below e '
pion production o

2 3
Distance into shield (mfp)

A. H. Sullivan, ISBN 1 870965 183 (1992), p. 39

@ Usually this is 3 MFP

@ Adding shielding might
make a problem worse!

@ Empty spaces can be
good

@ Guessing can be
difficult, we need to
simulate
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Hadronic Shielding Materials

Neutrons

— Direct beam
~ 10'E — 50cm Cu
{2 =
o E i —— —— 50cm Fe
< E —_ WM... - - — 20cm PE
2 -~
o - - ~ - —— 20cm PE + 0.2 cm B4C
2 - . -
c o 3
L 10° L4
£ E -
2 = 4
= - »
9]
Ul = '\G
10 = qﬁ
) lul 1 ﬂ ‘

2
Energy (log MeV)

C. Cooper-Jensen et al, in preparation
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Survey of SNS

Three brightest n sources:

@ Harp / A2T source —
mitigated by interface
with Tom Shea
(Accelerator)

@ Monolith interfaces —
earthquake gap between
target & bunker!

@ Basis shielding —
mitigated by margin of
error on the LOS.

DiJulio et al, Journal of Physics: Conference Series 746 (2016)
012033
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Survey of SNS

@ Earthquake gap is a
problem at any facility

@ Conflicting
requirements!
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Survey of SNS

Other interesting facts:
@ The accelerator is quiet

@ POWGEN straight
beamline is OK
@ BASIS thin shielding is
OK out of line of sight
We thought we might see a
safe but significant number of

fast neutrons there, but we
didn’t.

Wendi Il Log Neutron Dose (uSv/h)
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Background Requirements

Background Requirements
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Background Requirements

Requirements

@ “The world’s leading neutron source”

@ Interpreted by almost all instruments as exceeding current world
leading signal-to-noise by factor of 10 !
@ Typical numbers:

e 107% — 1077 elastic line to background on inelastic spectrometers
e 6-8 decades on log-log plot for SANS & Reflectometry
e 10* Bragg-peak to background on diffraction

'NOSG Handbook, ESS-0039408
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The Problem

@ Background limited science is frequently on a log scale.
@ Weak scattering

@ Small samples

@ “New horizons in science”...

@ The instruments are still radiologically safe
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nd Requirements

Spectroscopy
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SANS

Count rate (n/s/A”")

Loki 10mm sample, 10m collimation
O Detector 1 @ 2m
Detector 2 @ 5m
4 Detector 3 @ 10m

D22 10 mm sample (4.5 A neutrons)
4 10.5m Colimation

In(I)

© Quae/Qie = 1300

0.001 001 X
QA

ey (ESS)

Possible implementation and collaboration of |

_ Zero Q intercept - gives particle volume if

concentration is known

«~ Guinier region (slope = »rg2/3 gives particle “size”)

— Mass fractal dimension (slope = -D)

\ ~ Porod region - gives surface area and
surface fractal dimension
{slope = -(6-D)}

In(Q)
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Background Requirements

Reflectometry — 10~ is Possible

INIC Mirror

01; %
001; i

if"*fmg x — NiCMirror

0001 g y

0.0001 £

Reflectivity

1605 ¢

1606 £

1e-07 g

1e-08
0.0L

0.1
q(A)
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Background Requirements

Reflectometry — 103 Doesn’t Cut It

NiC Mirror
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0.01 ; ﬁ

¥
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Background Requirements

Background Requirements

HYSPEC data summed over all detectors

@ SNS CNCS and HYSPEC: R

BG~ 11-30 n s~ whole : ®
detector). i ’ @
@ BG:S ~ 103 g
@ ~ 100x too high et s R
@ Instrument proposals: HYSPEG (SNS), 100 too high

10 6-108nm2s1
@ TS2 and LET internal

backgrounds are so low you
even see TS1 background

LET (ISIS) Acceptable
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Background Requirements

Background Requirements

@ Similar problems on
CNCS T A

@ Similar problems at
JPARC i

E(meV)
1

1.1<Q<1.9A"

- 100 Prompt

=

£ Pulse

s 10

s

s k 1

g ! £ Magnetic

g b Bnetic, o, g, .cro, |

£ . xcitations  cucr, AL, 0,
0.01

0 2 :O }
Energy (meV)

2

Amateras (JPARC)
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HYSPEC Background Sources

.. Contributions to HYSPEC Prompt Pulse
@ Not trivial to debug et P

backgrounds -

@ Even if you find sources,
fixing them can be
expensive

@ Need to fix as much as
possible during early
design oLt

6% BL-1
3%

Everything Else
39%

M. Smith et al, ORNL/TM-2015/238
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ESS Cave Echo

Cave Echo Estimate at 150 m

@ MAGIC source (UWG Filges) 4 S 150m Guide Shielding
neutrons /cm2 /s

@ Fairly flat spectrum from keV
to 1 MeV

Shielding around guide
behind 77m;

"Neutron background al 150 m

« 2m heavy concrete
with vacuum tube belt

« 75m standard concrete

(05 mthickness)

neutrons
Source - tally S: 138 Svh

@80m ouside guide shielding
tallyE: 13 pSvh

@150minside guide shielding
tallyF: 0.2 pSv.
42nislom?

U. Filges (PSI)
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ESS Cave Echo

ns Pulse — Compare Model to Other Spallation
Sources

@ 5 x5 x 5nmd cave

@ “Bare structure” tail
matches time structure
very well

@ No skyshine, A2T,
target, bunker, crosstalk

@ lllustrates the fast
suppression of boron,
compared to cadmium

M. Smith et al, ORNL/TM-2015/238

I [T

Time (ms)
Simple model (MCNP+GEANT4-+python script)
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ESS Pulse (CSPEC,TREX)

@ 5 x5 x 5m° cave (B
@ ~ 5m? detector area :
@ + TOF broadening (150

m flight) ‘ k
@ 1 n/s fast neutron count 1 mu H ‘ m m
rate I S R
@ TREX has ~ 5x10% n/s Simple model (MCNP+GEANT4-+python script)
signal

@ These numbers are
consistent with 104
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Preliminary Skyshine Results

@ The ESS accelerator is
[ skyshine
very powerful [ St

@ Skyshine covers the
whole site

Relative Intensity (AU)
"
3

=
S

10°
0 100 200 300 400 500
Distance (m)

VERY PRELIMINARY results :)
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Preliminary Skyshine Results

@ Broad distribution of :
energies ~ 100s MeV
@ Skyshine signal is large:
10s n/m? /s

102

Relative Intensity (AU)

b

100 10° 10? 10%
Neutron Energy (MeV)

VERY PRELIMINARY results :)
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Skyshine
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Thank You

Thank you for your attention
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